• Title/Summary/Keyword: porous W

Search Result 262, Processing Time 0.027 seconds

The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test (가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.

Effect of the Crucible Cover on the Distillation of Cadmium

  • Kwon, S.W.;Jung, J.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2019.05a
    • /
    • pp.69-69
    • /
    • 2019
  • The distillation of liquid cathode is necessary to separate cadmium from the actinide elements in the pyroprocessing since the actinide deposits are dissolved or precipitated in a liquid cathode. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. Several methods have been proposed to lower the splattering of cadmium during distillation. One of the important methods is an installation of crucible cover on the distillation crucible. A multi-layer porous round cover was proposed to avoid a cadmium splattering in our previous study. In this study, the effect of crucible cover on the cadmium distillation was examined to develop a splatter shield. Various surrogates were used for the actinides in the cadmium. The surrogates such as bismuth, zirconia, and tungsten don't evaporate at the operational temperature of the Cd distiller due to their low vapor pressures. The distillation experiments were carried out in a crucible equipped with cover and in a crucible without cover. About 40 grams of Cd was distilled at a reduced pressure for two hours at various temperatures. The mixture of the cadmium and the surrogate was heated at $470{\sim}620^{\circ}C$. Most of the bismuth remained in the crucible equipped with cover after distillation under $580^{\circ}C$ for two hours, whereas small amount of bismuth decreased in the crucible without cover above $580^{\circ}C$. The liquid bismuth escaped with liquid cadmium drop from the crucible without cover. It seems that the crucible cover played a role to prevent the splash of the liquid cadmium drop. The effect of the cover was not clear for the tungsten or zirconia surrogate since the surrogates remained as a solid powder at the experimental temperature. From the results of this work, it can be concluded that the crucible cover can be used to minimize the deposit loss by prevention of escape of liquid drop from the crucible during distillation of liquid cathode.

  • PDF

Performance Enhancement of Solar-Driven Steam Generator by Local Wettability Control (태양열 활용 증발기의 성능 향상을 위한 국소적 젖음성 제어에 관한 실험적 연구)

  • Choi, Jinwook;Seo, Yongwon;Mo, Hyeong-Uk;Kim, Seolha
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.255-259
    • /
    • 2022
  • Solar membrane steam generation is a very promising technology that can harvest purified water from seawater or wastewater during the current danger of running out of pure water. However, solar Membrane steam generation had direct contact with water, making it difficult to increase the efficient amount of evaporation. Here, we propose solar membrane steam generator composed of polydimethylsiloxane (PDMS) and graphene oxide (GO) and improved evaporation through wettability control in part throughout the water-absorbing membrane. Wettability control has shown significant improvements in thermal localization and temperature rise in the area of heat exchange with sunlight. The evaporator has an evaporation rate of 1.54 kg m-2 h-1 under 1 sun irradiation. The results showed that Solar membrane steam evaporation can effectively harvest pure water through an increase in evaporation.

Development of Pore-Filled Anion-Exchange Membranes for High Performance Reverse Electrodialysis (고성능 역전기투석을 위한 세공충진 음이온교환막의 개발)

  • Kim, Do-Hyeong;Song, Hyeon-Bee;Yoon, Kyungseok;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.336-347
    • /
    • 2022
  • Reverse electrodialysis (RED) is one of the promising eco-friendly renewable energy technologies which can generate electricity from the concentration difference between seawater and freshwater by using ion-exchange membranes as a diaphragm. The ion-exchange membrane is a key component that determines the performance of RED, and must satisfy requirements such as low electrical resistance, high permselectivity, excellent durability, and low manufacturing cost. In this study, pore-filled anion-exchange membranes were fabricated using porous polymer substrates having various thicknesses and porosity, and the effects of ion-exchange polymer composition and membrane thickness on the power generation performance of RED were investigated. When the electrical resistance of the ion-exchange membrane is sufficiently low, it can be confirmed that the RED power generation performance is mainly influenced by the apparent permselectivity of the membrane. In addition, it was confirmed that the apparent permselectivity of the membranes can be improved through IEC, crosslinking degree, membrane thickness, surface modification, etc., and the optimum condition must be found in consideration of the trade-off relationship with electrical resistance.

Performance Evaluation of Eco-friendly Insulating Finish According to the Addition Ratio of Granular Cork (입상 코르크 첨가율에 따른 친환경 단열마감재의 성능평가)

  • Kim, Yong-Gu;Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.148-149
    • /
    • 2020
  • Currently, the most commonly used EPS insulation material has been mainly used because its ease of adhesion with concrete. However, due to poor adhesion with wallpaper, separate adhesion needs to be strengthened and there are cases of breakage or grooves in the process of dismantling the mold. The biggest problem is that when a fire breaks out, various harmful substances are present and highly flammable. Cork used in this study is a truly eco-friendly building material that is taken from between the outer and inner bark of cork trees and does not damage the wood. Also, it is a porous material that is made up of countless cells and contains an air gap between the cells. It is very light in weight between 0.06 and 0.07 and has excellent insulation with a heat conductivity of 0.04W/mK. In addition, it has high stability in the topic of conversation because it does not produce harmful gas when burned and has self-sustaining properties. However, research on cork, an eco-friendly building material with excellent performance to date, is scarce Therefore, we encourage existing scholars to raise interest in new eco-friendly building materials through this study. It also aims to manufacture insulation boards with new inorganic properties using the low weight and heat conductivity held by the cork.

  • PDF

Ion Transmittance of Anodic Alumina for Ion Beam Nano-patterning (이온빔 나노 패터닝을 위한 양극산화 알루미나의 이온빔 투과)

  • Shin S. W.;Lee J-H;Lee S. G.;Lee J.;Whang C. N.;Choi I-H;Lee K. H.;Jeung W. Y.;Moon H.-C.;Kim T. G.;Song J. H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.97-102
    • /
    • 2006
  • Anodic alumina with self-organized and ordered nano hole arrays can be a good candidate of an irradiation mask to modify the properties of nano-scale region. In order to try using porous anodic alumina as a mask for ion-beam patterning, ion beam transmittance of anodic alumina was tested. 4 Um thick self-standing AAO templates anodized from Al bulk foil with two different aspect ratio, 200:1 and 100:1, were aligned about incident ion beam with finely controllable goniometer. At the best alignment, the transmittance of the AAO with aspect ratio of 200:1 and 100:1 were $10^{-8}\;and\;10^{-4}$, respectively. However transmittance of the thin film AAO with low aspect ratio, 5:1, were remarkably improved to 0.67. The ion beam transmittance of self-standing porous alumina with a thickness larger than $4{\mu}m$ is extremely low owing to high aspect ratio of nano hole and charging effect, even at a precise beam alignment to the direction of nano hole. $SiO_2$ nano dot array was formed by ion irradiation into thin film AAO on $SiO_2$ film. This was confirmed by scanning electron microscopy that the $SiO_2$ nano dot array is similar to AAO hole array.

Performance of Waste-air Treating System Composed of Two Alternatively-operating UV/photocatalytic Reactors and Evaluation of Its Characteristics (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템의 성능 및 특성 평가)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.574-583
    • /
    • 2021
  • Waste air containing ethanol (100 ppmv) and hydrogen sulfide (10 ppmv) was continuously treated by waste air-treating system composed of two annular photocatalytic reactors (effective volume: 1.5 L) packed with porous SiO2 media carrying TiO2-anatase photocatalyst, one of which was alternately operated for 32 d/run while the other was regenerated by 100 ℃ hot air with 15 W UV(-A)-light on. As its elimination-behavior of ethanol, the removal efficiencies of ethanol at 1st, 2nd and 3rd operation of the photocatalytic reactor system(A), turned out to be ca. 60, 55 and 54%, respectively, at their steady state condition. Unlike the elimination-behavior of ethanol, its hydrogen sulfide-elimination behavior showed repeated decrease of hydrogen sulfide removal efficiency by its resultant arrival at a lower level of steady state condition. Nevertheless, the removal efficiencies of hydrogen sulfide at 1st, 2nd and 3rd operation of the photocatalytic reactor system, turned out to be ca. 80, 75 and 73%, respectively, at their final steady state condition, higher by ca. 20, 20 and 19% than those of ethanol, respectively. Therefore, assuming that adsorption on porous SiO2-photocatalyst carrier was regarded to belong to a reversible deactivation and that decreased % of removal efficiency due to the reversible deactivation of photocatalyst including the adsorption was independent of the number of its use upon regeneration, the increments of the decreased % of removal efficiency of ethanol and hydrogen sulfide, due to an irreversible deactivation of photocatalyst, for the 3rd use of regenerated photocatalyst, compared with the 2nd use of regenerated photocatalyst, were ca. 1 and 2%, respectively, which was insignificant or the less than those of ca. 5 and 5%, respectively, for the 2nd use of regenerated photocatalyst compared with the 1st use of virgin photocatalyst. This trend of the photocatalytic reactor system was observed to be similar to that of the other alternately-operating photocatalytic reactor system.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs) (마이크로 원통형 SOFC 제작 및 특성평가)

  • Kim, Hwan;Kim, Wan-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.749-753
    • /
    • 2012
  • In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of $1095mW/cm^2$ on the condition of $800^{\circ}C$. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single cell with reaction temperature.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.