Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.5.336

Development of Pore-Filled Anion-Exchange Membranes for High Performance Reverse Electrodialysis  

Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University)
Song, Hyeon-Bee (Department of Green Chemical Engineering, Sangmyung University)
Yoon, Kyungseok (W-Scope Korea Co. Ltd.)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.32, no.5, 2022 , pp. 336-347 More about this Journal
Abstract
Reverse electrodialysis (RED) is one of the promising eco-friendly renewable energy technologies which can generate electricity from the concentration difference between seawater and freshwater by using ion-exchange membranes as a diaphragm. The ion-exchange membrane is a key component that determines the performance of RED, and must satisfy requirements such as low electrical resistance, high permselectivity, excellent durability, and low manufacturing cost. In this study, pore-filled anion-exchange membranes were fabricated using porous polymer substrates having various thicknesses and porosity, and the effects of ion-exchange polymer composition and membrane thickness on the power generation performance of RED were investigated. When the electrical resistance of the ion-exchange membrane is sufficiently low, it can be confirmed that the RED power generation performance is mainly influenced by the apparent permselectivity of the membrane. In addition, it was confirmed that the apparent permselectivity of the membranes can be improved through IEC, crosslinking degree, membrane thickness, surface modification, etc., and the optimum condition must be found in consideration of the trade-off relationship with electrical resistance.
Keywords
reverse electrodialysis; ion-exchange membranes; pore-filled anion-exchange membranes; apparent permselectivity; surface modification;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 G. Zhen, Y. Pan, X. Lu, Y.-Y. Li, Z. Zhang, C. Niu, G. Kumar, T. Kobayashi, Y. Zhao, and K. Xu, "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives", Renew. Sust. Energ. Rev., 115, 109392 (2019).   DOI
2 M. Tawalbeh, A. Al-Othman, N. Abdelwahab, A. H. Alami, and A. G. Olabi, "Recent developments in pressure retarded osmosis for desalination and power generation", Renew. Sust. Energ. Rev., 138, 110492 (2021).   DOI
3 E. Guler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266-276 (2013).   DOI
4 S. K. Jeong, J. S. Lee, S. H. Woo, J. A. Seo, and B. R. Min, "Characterization of anion exchange membrane containing epoxy ring and C-Cl bond quaternized by various amine groups for application in fuel cells", Energies, 8, 7084-7099 (2015).   DOI
5 H. A. Ezzeldin, A. Apblett, and G. L. Foutch, "Synthesis and properties of anion exchangers derived from chloromethyl styrene covininylbenzene and their use in water treatment", Int. J. Polym. Sci., 2010, Article ID 684051 (2010).
6 Y. J. Lee, M. S. Cha, S.-G. Oh, S. So, T.-H. Kim, W. S. Ryoo, Y. T. Hong, and J. Y. Lee, "Reinforced anion exchange membrane based on thermal cross-linking method with outstanding cell performance for reverse electrodialysis", RSC Adv., 9, 27500-27509 (2019).   DOI
7 B. Kang, H. J. Kim, and D. K. Kim, "Membrane electrode assembly for energy harvesting from salinity gradient by reverse electrodialysis", J. Membr. Sci., 550, 286-295 (2018).   DOI
8 J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136-144 (2009).   DOI
9 E. Brauns, "Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output", Desalination, 237, 378-391 (2009).   DOI
10 J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139-147 (2014).   DOI
11 J. Choi, S. C. Yang, N.-J. Jeong, H. Kim, and W.-S. Kim, "Fabrication of an anion-exchange membrane by pore-filling using catechol-1,4-diazabicyclo-[2,2,2]octane coating and its application to reverse electrodialysis", Langmuir, 34, 10837-10846 (2018).   DOI
12 H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, and C.-S. Kim, "High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer", J. Mater. Chem. A, 3, 16302-16306 (2015).   DOI
13 K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, "A review of the synthesis and characterization of anion exchange membranes", J. Mater. Sci., 53, 11131-11150 (2018).   DOI
14 D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43-54 (2016).   DOI
15 D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y. S. Kang, J.-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80-86 (2013).   DOI
16 E. Guler, W. V. Baak, M. Saakes, and K. Nijmijer, "Monovalent-ion-selective membranes for reverse electrodialysis" J. Membr. Sci., 455, 254-270 (2014).   DOI
17 V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, C. Larchet, and L. Dammak, V. Nikonenko, "Transport characteristics of Fujifilm ion-exchange membranes as compared to homogeneous membranes АМХ and СМХ and to heterogeneous membranes MK-40 and MA-41", Membranes, 9, 84 (2019).   DOI
18 T. Yamaguchi, S. Nakao, and S. Kimura, "Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures", Macromolecules, 24, 5522-5527 (1991).   DOI
19 T. Yamaguchi, F. Miyata, and S. Nakao, "Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell" J. Membr. Sci., 214, 283-292 (2003).   DOI
20 D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212-220 (2016).   DOI
21 D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anionexchange membranes by coating imidazolium polymer", Membr. J., 25, 152-161 (2015).   DOI
22 S. C. Yang, Y.-W. Choi, J. Choi, N. Jeong, H. Kim, J.-Y. Nam, and H. Jeong, "R2R fabrication of pore-filling cation-exchange membranes via one-time impregnation and their application in reverse electrodialysis" ACS Sustainable Chem. Eng., 7, 12200-12213 (2019).
23 L. Gomez-Coma, V. M. Ortiz-Martinez, F. J. Carmona, L. Palacio, P. Pradanos, M. Fallanza, A. Ortiz, R. Ibanez, and I. Ortiz, "Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis", J. Membr. Sci., 592, 117385 (2019).   DOI
24 D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129-137 (2017).   DOI
25 G. M. Geise, H. J. Cassady, D. R. Paul, B. E. Logan, and M. A. Hickner, "Specific ion effects on membrane potential and the permselectivity of ion exchange membranes", Phys. Chem., 16, 21673-21681 (2014).