DOI QR코드

DOI QR Code

Development of Pore-Filled Anion-Exchange Membranes for High Performance Reverse Electrodialysis

고성능 역전기투석을 위한 세공충진 음이온교환막의 개발

  • 김도형 (상명대학교 그린화학공학과) ;
  • 송현비 (상명대학교 그린화학공학과) ;
  • 윤경석 (더블유스코프코리아) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2022.10.11
  • Accepted : 2022.10.14
  • Published : 2022.10.31

Abstract

Reverse electrodialysis (RED) is one of the promising eco-friendly renewable energy technologies which can generate electricity from the concentration difference between seawater and freshwater by using ion-exchange membranes as a diaphragm. The ion-exchange membrane is a key component that determines the performance of RED, and must satisfy requirements such as low electrical resistance, high permselectivity, excellent durability, and low manufacturing cost. In this study, pore-filled anion-exchange membranes were fabricated using porous polymer substrates having various thicknesses and porosity, and the effects of ion-exchange polymer composition and membrane thickness on the power generation performance of RED were investigated. When the electrical resistance of the ion-exchange membrane is sufficiently low, it can be confirmed that the RED power generation performance is mainly influenced by the apparent permselectivity of the membrane. In addition, it was confirmed that the apparent permselectivity of the membranes can be improved through IEC, crosslinking degree, membrane thickness, surface modification, etc., and the optimum condition must be found in consideration of the trade-off relationship with electrical resistance.

역전기투석(reverse electrodialysis, RED)은 이온교환막을 격막으로 이용하여 해수와 담수의 농도차로부터 발전하는 유망한 친환경 재생에너지 기술 중 하나이다. 이온교환막은 RED의 성능을 좌우하는 핵심 구성요소로 낮은 전기적 저항, 높은 이온선택투과도, 우수한 내구성 및 저렴한 제조 비용 등의 요구조건을 만족시켜야 한다. 본 연구에서는 다양한 두께 및 기공율을 갖는 다공성 고분자 지지체를 이용하여 세공충진 음이온교환막을 제조하고 이온교환 고분자의 조성과 막 두께가 RED의 발전 성능에 미치는 영향을 조사하였다. 이온교환막의 전기적 저항이 충분히 낮은 경우 RED 발전 성능은 주로 막의 apparent permselectivity에 의해 좌우됨을 확인할 수 있었다. 또한 막의 apparent permselectivity는 IEC, 가교도, 막 두께, 표면 개질 등을 통해 향상시킬 수 있으며 전기적 저항과의 trade off 관계를 고려하여 최적 조건을 찾아야 함을 확인하였다.

Keywords

Acknowledgement

본 연구는 2022년도 정부(산업통상자원부)의 재원으로 산업기술평가관리원의 지원(No. 20010491) 및 KIER 주요사업의 지원(No. C2-2473)을 받아 수행되었음.

References

  1. G. Zhen, Y. Pan, X. Lu, Y.-Y. Li, Z. Zhang, C. Niu, G. Kumar, T. Kobayashi, Y. Zhao, and K. Xu, "Anaerobic membrane bioreactor towards biowaste biorefinery and chemical energy harvest: Recent progress, membrane fouling and future perspectives", Renew. Sust. Energ. Rev., 115, 109392 (2019). https://doi.org/10.1016/j.rser.2019.109392
  2. B. Kang, H. J. Kim, and D. K. Kim, "Membrane electrode assembly for energy harvesting from salinity gradient by reverse electrodialysis", J. Membr. Sci., 550, 286-295 (2018). https://doi.org/10.1016/j.memsci.2018.01.006
  3. J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136-144 (2009). https://doi.org/10.1016/j.memsci.2008.11.015
  4. M. Tawalbeh, A. Al-Othman, N. Abdelwahab, A. H. Alami, and A. G. Olabi, "Recent developments in pressure retarded osmosis for desalination and power generation", Renew. Sust. Energ. Rev., 138, 110492 (2021). https://doi.org/10.1016/j.rser.2020.110492
  5. E. Brauns, "Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output", Desalination, 237, 378-391 (2009). https://doi.org/10.1016/j.desal.2008.10.003
  6. E. Guler, R. Elizen, D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266-276 (2013). https://doi.org/10.1016/j.memsci.2013.06.045
  7. J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139-147 (2014). https://doi.org/10.1016/j.memsci.2014.02.027
  8. E. Guler, W. V. Baak, M. Saakes, and K. Nijmijer, "Monovalent-ion-selective membranes for reverse electrodialysis" J. Membr. Sci., 455, 254-270 (2014). https://doi.org/10.1016/j.memsci.2013.12.054
  9. V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, C. Larchet, and L. Dammak, V. Nikonenko, "Transport characteristics of Fujifilm ion-exchange membranes as compared to homogeneous membranes АМХ and СМХ and to heterogeneous membranes MK-40 and MA-41", Membranes, 9, 84 (2019). https://doi.org/10.3390/membranes9070084
  10. T. Yamaguchi, S. Nakao, and S. Kimura, "Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures", Macromolecules, 24, 5522-5527 (1991). https://doi.org/10.1021/ma00020a006
  11. T. Yamaguchi, F. Miyata, and S. Nakao, "Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell" J. Membr. Sci., 214, 283-292 (2003). https://doi.org/10.1016/S0376-7388(02)00579-3
  12. D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212-220 (2016). https://doi.org/10.1016/j.electacta.2016.10.041
  13. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43-54 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  14. D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anionexchange membranes by coating imidazolium polymer", Membr. J., 25, 152-161 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152
  15. S. C. Yang, Y.-W. Choi, J. Choi, N. Jeong, H. Kim, J.-Y. Nam, and H. Jeong, "R2R fabrication of pore-filling cation-exchange membranes via one-time impregnation and their application in reverse electrodialysis" ACS Sustainable Chem. Eng., 7, 12200-12213 (2019).
  16. Y. J. Lee, M. S. Cha, S.-G. Oh, S. So, T.-H. Kim, W. S. Ryoo, Y. T. Hong, and J. Y. Lee, "Reinforced anion exchange membrane based on thermal cross-linking method with outstanding cell performance for reverse electrodialysis", RSC Adv., 9, 27500-27509 (2019). https://doi.org/10.1039/C9RA04984C
  17. J. Choi, S. C. Yang, N.-J. Jeong, H. Kim, and W.-S. Kim, "Fabrication of an anion-exchange membrane by pore-filling using catechol-1,4-diazabicyclo-[2,2,2]octane coating and its application to reverse electrodialysis", Langmuir, 34, 10837-10846 (2018). https://doi.org/10.1021/acs.langmuir.8b01666
  18. H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, and C.-S. Kim, "High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer", J. Mater. Chem. A, 3, 16302-16306 (2015). https://doi.org/10.1039/C5TA03571F
  19. K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, "A review of the synthesis and characterization of anion exchange membranes", J. Mater. Sci., 53, 11131-11150 (2018). https://doi.org/10.1007/s10853-018-2409-y
  20. L. Gomez-Coma, V. M. Ortiz-Martinez, F. J. Carmona, L. Palacio, P. Pradanos, M. Fallanza, A. Ortiz, R. Ibanez, and I. Ortiz, "Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis", J. Membr. Sci., 592, 117385 (2019). https://doi.org/10.1016/j.memsci.2019.117385
  21. D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129-137 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129
  22. G. M. Geise, H. J. Cassady, D. R. Paul, B. E. Logan, and M. A. Hickner, "Specific ion effects on membrane potential and the permselectivity of ion exchange membranes", Phys. Chem., 16, 21673-21681 (2014).
  23. S. K. Jeong, J. S. Lee, S. H. Woo, J. A. Seo, and B. R. Min, "Characterization of anion exchange membrane containing epoxy ring and C-Cl bond quaternized by various amine groups for application in fuel cells", Energies, 8, 7084-7099 (2015). https://doi.org/10.3390/en8077084
  24. H. A. Ezzeldin, A. Apblett, and G. L. Foutch, "Synthesis and properties of anion exchangers derived from chloromethyl styrene covininylbenzene and their use in water treatment", Int. J. Polym. Sci., 2010, Article ID 684051 (2010).
  25. D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y. S. Kang, J.-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80-86 (2013). https://doi.org/10.1016/j.memsci.2013.07.017