• Title/Summary/Keyword: porous PTFE

Search Result 39, Processing Time 0.027 seconds

Preperation of catalyst having high activity on oxygen reduction (저온형 연료전지용 산소의 고활성 환원 촉매 제조)

  • 김영우;김형진;이주성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.39-40
    • /
    • 1992
  • This paper dealt with the manufacturing of binary alloy catalyst and showed simple electrochemical method for determing catalytic activity of oxygen reduction in acid or alkaline electrolyte. The catalyst was prepared by impregnating transition metal salts on platinum or silver particles adsorbed before on carbon paper substrate. The electrochemical characteristics of the catalysts was investigated with carbon paper electrode or PTFE-boned porous electrode and then cathodic current densities and tafel slopes were compared. As a result, of all binary catalysts utilized in this work, Pt-Fe, Pt-Mo showed better oxygen reduction activity than pure platinum catalyst in acid electrolyte and Ag-Fe, Ag-Pt, and Ag-Ni-Bi-Ti catalyst did than pure silver catalyst in alkaline electrolyte. The current density of Pt-Fe electrode in acid electrolyte was one and half times higher than that of Pt electrode(~500mA/$\textrm{cm}^2$ at 0.7VvsNHE).

  • PDF

Effect of structure of PVDF membranes on the performance of membrane distillation

  • Chang, Hsu-Hsien;Tsai, Chih-Hao;Wei, Hao-Cheng;Cheng, Liao-Ping
    • Membrane and Water Treatment
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2014
  • A series of microporous PVDF membranes were prepared by isothermal immersionprecipitation of PVDF/TEP casting dopes in both soft and harsh coagulation baths. Morphologies of the membranes' top surfaces were found to depend strongly on the bath strength, which could be controlled by the TEP content in the bath. By changing the bath gradually from pure water to 70% TEP, the top surface evolved from a dense skin-like (asymmetric) to a totally open porous morphology (symmetric). The latter structure could similarly be obtained by precipitation of the same dope in an alcoholic bath, e.g., 1-butanol. Membrane distillation processes to desalt sodium chloride aqueous solutions were conducted using various prepared membranes and two commercial microporous membranes, PTFE (Toyo, Japan, code: J020A330R) and PVDF (GE, USA, code: YMJWSP3001). The permeation fluxes were compared and correlated with the morphologies of the tested membranes.

Application of a Membrane Desolvator to the Analysis of Organic Solvents in Inductively Coupled Plasma Atomic Emission Spectrometry

  • Lee, J. S.;Lim, H. B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1040-1044
    • /
    • 1999
  • A micro porous PTFE membrane desolvator (MMD) was built and evaluated for the on-line removal of organic solvents to facilitate the determination of trace metal contaminants in the solvents by ICP-AES. Three organic solvents, isopropyl alcohol (IPA), methanol, and dimethy sulfoxide (DMSO) were studied. The MMD reduced organic solvent concentration in the sample aerosol stream by 82% to 89%, as indicated by monitoring C(I) emission. Net signal intensity of Fe, Al, and Cu was increasing with higher organic solvent concentration, with the rate of increase being solvent dependent. The signal intensities for Mg and Pb followed the trend with the C(I) signal. Changing the sweep gas flow rate affected the optimum signal intensity. Wine samples were analyzed by the method of standard addition. The concentrations of B, Al, and Mg were determined with a relative precision of less than 2.3%.

Gas diffusion electrode containing sulfonated poly(ether sulfone) as ionomer for polymer electrolyte fuel cells (Sulfonated poly(ether sulfone)을 함유한 고분자 전해질 연료전지용 기체 확산 전극에 관한 연구)

  • Ryu, Sung Kwan;Choi, Young Woo;Yang, Tae Hyun;Yim, Sung Dae;Kim, Han Sung;Kim, Chang Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • Polymer electrolyte fuel cells (PEFCs) have received a lot of attention as a power source for both stationary and mobile applications due to their attractive feature. In general, the performance of PEFCs is highly affected by the property of the electrodes. A PEFC electrode essentially consists of a gas diffusion layer and a catalyst layer. The gas difusion layer is highly porous and hydrophobicized with PTFE polymer. The catalyst layer usually contains electrocatalyst, proton conducting polymer, even PTFE as additive. Particularly, the proton conducting ionomer helps to increase the catalytic activity at three-phase boundary and catalyst utilization. Futhermore, it helps to retain moisture, resulting in preventing the electrodes from membrane dehydration. The most widely used proton conducting ionomer is perfluorinated sulfonic acid polymer, namely, Nafion from DuPont due to its high proton conductivity and good mechanical property. However, there are great demands for alternative ionomers based on non-fluorinated materials in terms of high temperature availability, environmental adaptability and production cost. In this study, the electrodes with the various content of the sulfonated poly(ether sulfone) ionomer in the catalyst layer were prepared. In addition, we evaluated electrochemical properties of the prepared electrodes containing the various amount of the ionomers by using the cyclic voltammetry and impedance spectroscopy to find an optimal ionomer composition in the catalyst layer.

  • PDF

Teflon coating of fabric filters for enhancement of high temperature durability (섬유상 여과필터의 고온 내구성 향상을 위한 테프론 코팅 연구)

  • Kim, Eun-Joo;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.232-239
    • /
    • 2011
  • Fabric fibrous filter has been used in various industrial applications owing to the low cost and wide generality. However, the basic properties of fabric materials often limit the practical utilization including hot gas cleaning. This study attempts to find new coatings of porous fibrous filter media in order to overcome its insufficient thermal resistance and durability. Teflon was one of the plausible chemicals to supplement the vulnerability against frequent external thermal impacts. A foaming agent composed of Teflon and some organic additives was tentatively coated on the glass fiber mat. The present test Teflon foam coated filter was fount to be useful for hot gas cleaning, up to $250^{\circ}C$-$300^{\circ}C$. Close examination using XPS(X-ray Photoelectron Spectroscopy) and Contact angle proved the binding interactions between carbon and fluorine, which implies coating stability. The PTFE/Glass foam coated filter consisted of more than 95% (C-F)n bond, and showed super-hydrophobic with good-oleophobic characteristics. The contact angle of liquid droplets on the filter surface enabled to find the filter wet-ability against liquid water or oil.

Vacuum Stripping of $CO_2$ from Aqueous MEA Solutions Using PDMS-PE Composite Membrane Contactor (MEA 수용액으로부터 PDMS-PE 복합막 접촉기를 이용한 이산화탄소 감압탈거)

  • Kim, Jeong-Hoon;Ahn, Hyo-Seong;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • Low-temperature carbon dioxide stripping by a vacuum membrane stripping technology was studied as a substitute for the stripping process in a conventional aqueous amine process. Composite membranes with $5{\mu}m$ thickness of PDMS (polydimethylsiloxane) dense layer on a PE (polyethylene) support layer were prepared by a casting method and used as a membrane contactor for $CO_2$ stripping. Aqueous amine solutions of 30 wt% MEA (monoethanolamine) were used as absorbents. $CO_2$ flux was examined under various operating conditions by varying the vacuum pressure (60~360 mmHg (abs.)), stripping temperature ($25{\sim}80^{\circ}C$), $CO_2$ loading (0.5~0.7). $CO_2$ stripping flux increased with increasing temperature and $CO_2$ loading as well as decreasing vacuum pressure. PDMS-PE composite membrane has stability for vacuum stripping process compared with PTFE porous membrane.

Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application (음이온교환막 연료전지 응용을 위한 UV 중합법을 이용한 세공 충진 음이온교환막 개발)

  • Ga Jin Kwak;Do Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.33 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • In this study, pore-filled ion exchange membranes with low membrane resistance and high hydroxide ion conductivity was developed. To improve alkali durability, a porous substrate made of polytetrafluoroethylene was used, and a copolymer was prepared using monomers 2-(dimethyl amino) ethyl methacrylate (DMAEMA) and vinyl benzyl chloride (VBC) for pores. divinyl benzene (DVB) was used as the cross-linker, and ion exchange membranes were prepared for each cross-linking agent content to study the effect of the cross-linker content on DMAEMA-DVB and VBC-DMAEMA-DVB copolymers. As a result, chemical stability is improved by using a PTFE material substrate, and productivity can be increased by enabling fast photo polymerization at a low temperature by using a low-pressure UV lamp. To confirm the physical and chemical stability of the ion exchange membrane required for an anion exchange membrane fuel cell, tensile strength, and alkali resistance tests were conducted. As a result, as the cross-linking degree increased, the tensile strength increased by approximately 40 MPa, and finally, through the silver conductivity and alkali resistance tests, it was confirmed that the alkaline stability increased as the cross-linking agent increased.

Electrochemical Characteristics of Hybrid Capacitor and Pulse Performance of Hybrid Capacitor / Li-ion Battery (Hybrid Capacitor의 전기화학적 특성 및 Hybrid Capacitor / Li-ion Battery의 펄스 방전 특성)

  • Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Kim, Hyun-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1133-1138
    • /
    • 2005
  • In this study, we have prepared, as the pluse power source, a commercially supplied Li-ion battery with a capacity of 700 mAh and AC resistivity of 60 md at 1 kHz and nonaqeous asymmetric hybrid capacitor composed of an activated carbon cathode and MCMB anode, and have examined the electrochemical characteristics of hybrid capacitor and the pulse performances of parallel connected hybrid capacitor/Li-ion battery source. The nonaqueous asymmetric hybrid capacitors constituted with each stack number of pairs composed of the cathode, the porous separator and the anode electrode were housed in Al-laminated film cell. The 10 stacked hybrid capacitor, which was charged and discharged at a constant current at 0.25 $mA/cm^2$ between 3 and 4.3 V, has exhibited the capacitance of 108F and the lowest equivalent series resistance was 32 $m{\Omega}$ at 1 kHz. On the other hand, the enhanced run time of Li-ion battery assisted by the hybrid capacitor was obtained with increasing of current density and pulse width in Pulse mode. The best improvement, $84\;\%$ for hybrid capacitor/Li-ion battery was obtained in the condition of a 7C-rate pulse (100 msec)/0.5C-rate standby/$10\;\%$ duty cycle.

Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes (다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동)

  • Sang-Eun, Chun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.394-401
    • /
    • 2022
  • Two polymer precursors, polyvinylidene chloride-resin (PVDC-resin) and polyvinylidene fluoride (PVDF), are assembled into the microporous carbon by pyrolysis. Microporous carbon is advantageous as an electrode for supercapacitors that store electric charges through ion adsorption/desorption. The pyrolysis also turns the various heteroatoms of two precursors into functional groups, contributing to the additional charge storage. The analysis of the porous structure and function group during carbonization are important to develop the carbon for energy storage. Here, we analyzed the functional groups of two polymer-derived carbons through X-ray photoelectron spectroscopy. The electrochemical properties of the functional groups were explored in various pH electrolytes. The specific capacitance of two carbons in the acidic electrolyte (1 M H2SO4) was improved compared to that in the neutral electrolyte (0.5 M Na2SO4) due to the faradaic charge/discharge reaction of the quinone functional group. In particular, the carbon electrode derived from PVDC-resin exhibits a lower capacity than the carbon from PVDF due to the small micropores. In the alkaline electrolyte (6 M KOH), the highest specific capacitance and rate capability were obtained among the three electrolytes for both electrodes based on the facile adsorption of the constituent electrolyte ions (K+, OH-).