

Special Issue Paper

다른 pH의 전해질에서 polyvinylidene chloride-resin와 polyvinylidene fluoride로부터 합성된 다공성 탄소의 전하 저장 거동

전상은*,***

Charge Storage Behavior of the Carbons Derived from Polyvinylidene Chloride-resin and Polyvinylidene Fluoride in Different pH Electrolytes

Sang-Eun Chun*,**[†]

ABSTRACT: Two polymer precursors, polyvinylidene chloride-resin (PVDC-resin) and polyvinylidene fluoride (PVDF), are assembled into the microporous carbon by pyrolysis. Microporous carbon is advantageous as an electrode for supercapacitors that store electric charges through ion adsorption/desorption. The pyrolysis also turns the various heteroatoms of two precursors into functional groups, contributing to the additional charge storage. The analysis of the porous structure and function group during carbonization are important to develop the carbon for energy storage. Here, we analyzed the functional groups of two polymer-derived carbons through X-ray photoelectron spectroscopy. The electrochemical properties of the functional groups were explored in various pH electrolytes. The specific capacitance of two carbons in the acidic electrolyte (1 M H_2SO_4) was improved compared to that in the neutral electrolyte (0.5 M Na_2SO_4) due to the faradaic charge/discharge reaction of the quinone functional group. In particular, the carbon electrode derived from PVDC-resin exhibits a lower capacity than the carbon from PVDF due to the small micropores. In the alkaline electrolyte (6 M KOH), the highest specific capacitance and rate capability were obtained among the three electrolytes for both electrodes based on the facile adsorption of the constituent electrolyte ions (K⁺, OH⁻).

초 록: Polyvinylidene chloride-resin(PVDC-resin)와 polyvinylidene fluoride(PVDF)의 두 폴리머 전구체는 열분해 과 정을 통해 마이크로 다공성 탄소로 변환되어 되므로 이온 흡/탈착으로 전하를 저장하는 슈퍼커패시터용 전극재 료로 유리하다. 더욱이, 두 전구체를 구성하는 여러가지 이종원소들은 탄화 후 작용기를 형성하여 추가적인 전하 저장에 기여할 수 있으므로, 탄화 시 생성되는 작용기에 대한 분석은 에너지 저장용 탄소소재를 개발하는데 중요 하다. 본 연구에서는 두 폴리머 전구체를 탄화시킨 후 생성된 작용기를 X-선 광전자 분광법(X-ray photoelectron spectroscopy)과 다양한 pH의 전해질에서 탄소 전극의 전기화학 거동 관찰을 통하여 확인하였다. 산성(1 M H₂SO₄) 전해질에서 측정된 두 탄소 전극의 비전기용량은 생성된 quinone 작용기의 패러데익 충/방전 반응 덕분에 중성 전해질(0.5 M Na₂SO₄)에서보다 증가하였다. 특히, PVDC-resin으로부터 합성된 탄소는 매우 작은 마이크로 기공이 표면에 형성되어 있어 전해질 이온의 흡착을 어렵게 하므로, PVDF로부터 합성된 탄소 전극에 비해 낮은 용량을 보인다. 염기성 전해질(6 M KOH)에서 두 탄소 전극 모두 3가지 전해질 중 가장 높은 비전기용량이 측정되었는데, 이는 구성하는 전해질 이온들(K⁺, OH⁻)이 두 탄소에 형성된 마이크로 기공으로 흡/탈착이 용이하게 일어나는 동 시에 패러데익 충/방전 반응으로 추가적인 전하가 저장되었기 때문이다.

Received 31 October 2022, received in revised form 28 November 2022, accepted 11 December 2022

*School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea **Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea [†]Corresponding author (E-mail: Sangeun@knu.ac.kr) **Key Words:** Polyvinylidene fluoride-resin (PVDF-resin), Polytetrafluoroethylene (PTFE), micropore), Na₂SO₄, H₂SO₄, KOH

1. 서 론

고속 충방전이 가능한 슈퍼커패시터는 높은 출력 특성 의 에너지 저장 장치로서, 높은 에너지 밀도를 갖지만 낮은 출력 성능의 배터리를 보완해 줄 수 있는 에너지 저장 장치 로서 다양한 응용 분야에 활용되고 있다[1-4]. 슈퍼커패시 터가 고속 충방전이 가능한 이유는 전하 저장 반응 메커니 즘이 전해질 이온의 전극 표면으로 빠른 흡/탈착 반응에 의 해 일어나기 때문이다[2,5,6]. 따라서 넓은 비표면적을 가지 는 동시에 전극으로서 필요한 전기전도성을 갖는 활성탄 소재가 주로 전극 소재로서 활용된다[7-9]. 활성탄의 합성 은 일반적으로 유기물 전구체의 탄화와 이어서 기공을 생 성하는 활성화 과정의 2단계를 거쳐야 하므로 복잡한 공정 시설과 비용이 추가된다[7]. 기존의 유기물 전구체(식물군, 동물군)들와 달리 탄소 주사슬(backbone)에 다양한 이종원 소(hetero-atom)들이 결합된 구조의 폴리머 소재(예, polyvinylidene chloride(PVDC), polyvinylidene fluoride (PVDF) 등)들은 열분해 과정에서 고리형 분자구조(aromatic) 구조의 그래핀 층(graphene layer)이 적층된 구조를 형성함 과 동시에 이종원소들의 방출에 의해 다수의 기공을 생성 한다. 따라서, PVDC와 PVDF와 같은 폴리머 전구체들은 간 단한 열분해 과정을 통해 다공성 탄소로 변환되므로 슈퍼 커패시터용 고비표면적의 전극으로 최근 각광받고 있다[10-13].

PVDC와 PVDF 전구체는 비교적 손쉽게 다공성 탄소를 합성할 수 있다는 장점이 있으나, 기존 전극재료로 널리 활 용되고 있는 코코넛 기반의 다공성 활성탄에 비하면 비표 면적이 1,000 m² g⁻¹ 이하로 다소 낮다[10,14,15]. 따라서 실 제 상용 슈퍼커패시터용 전극 재료로 사용되기 위해서는 추가적인 기공 생성을 필요로 한다[16,17]. 추가적인 기공 생성 공정의 도입은 활성탄 제조 비용을 상승시키므로, 한 번의 공정으로 손쉽게 다공성 탄소 합성이 가능한 전구체 로서의 장점을 감소시킨다. 상용으로 구입 가능한 PVDCresin은 주성분인 탄소 이외에도 H, Cl와 N 등의 원소로 구 성되어 있다. 열분해 과정 중 탄소이외의 이종 원소들은 다 양한 작용기를 형성할 수 있다[18]. 탄소에 존재하는 O또 는 N를 포함하는 작용기는 전극으로 사용시 전하 전달의 패러데익(faradaic) 반응으로 전하 저장이 가능하다[19]. 따 라서, 폴리머 전구체로부터 합성된 탄소 전극은 이온 흡착 에 의한 capacitive 충전 이외에도 추가적인 패러데익 반응 에 의해 비전기용량의 향상이 기대된다[20,21]. PVDF 전구 체 또한 열분해 과정에서 패러데익 반응을 하는 작용기가 생성된다면 낮은 비표면적에 의한 낮은 비전기용량을 상 승시킬 수 있다. 따라서, 두 폴리머 전구체로부터 합성된 다 공성 탄소를 슈퍼커패시터용 전극으로 활용하기 위해서는 열분해 후 형성된 기공 구조와 함께 생성된 작용기의 분석 이 필수적이다. 특히, 생성된 작용기에서 추가적인 전하 저 장 반응이 일어날 수 있도록 탄소 전극에서 패러데익 충/ 방전 반응을 나타나는 전해질의 선정이 필요하다.

탄소 전극에 생성된 작용기의 종류 및 분율은 일반적으 로 X-선 광전자 분광법을 통하여 가능하다[22]. 탄소 소재 에 존재하는 다양한 작용기는 전해질에 존재하는 이온의 종류(H⁺, OH⁻)에 따라 패러데익 반응의 여부가 결정된다. 즉, 탄소에 존재하는 작용기가 함께 전해질내 존재하는 이 온들과 반응하여 패러데익 반응을 하는 경우 추가적인 전 하 저장 반응으로 전극의 비전기용량이 향상된다. 따라서, 다 른 pH의 전해질들은 구성하는 이온의 종류가 달라지므로, 다 양한 전해질에서 탄소 전극의 전기화학 거동 분석을 통해 서 형성된 작용기의 분석이 가능하다. 게다가 실용적인 관 점에서 작용기의 패러데익 반응에 의한 에너지 저장 용량 의 향상 확인이 가능하다. 즉, 폴리머 전구체의 열분해로부 터 합성한 탄소 전극을 다양한 전해질에서 전기화학 거동 분석을 통하여 열분해 동안 형성된 작용기의 종류와 작용 기에 의한 비전기용량의 향상을 측정할 수 있다.

본 연구는 탄소를 주사슬로 하며 이종원소가 결합된 두 가지 전구체(PVDC-resin, PVDF)를 열분해하여 탄화된 폴 리머가 슈퍼커패시터용 전극 재료로 사용 가능성을 분석 하였다. 특히, 두 폴리머 전구체는 이종원소가 열분해 중 방 출되어 무수히 많은 마이크로 크기의 기공을 갖는 다공성 탄소를 형성하므로 넓은 비표면적 덕분에 이온 흡/탈착에 유리한 구조이므로 커패시터용 전극재료로 유망하다. 하지 만, 이온 흡/탈착에 의한 전하 저장 용량은 전극재료로 사 용하기에 충분하지 않다. 그러나, 전구체에 존재하는 다양 한 이종 원소들은 열분해 과정 후 탄소 소재내에서 다양한 형태의 작용기로 변화하여 사용하는 전해질에 따라 패러 데익 반응이 일어나 전극의 용량 향상에 기여할 수 있다. 따 라서, PVDC-resin과 PVDF 전구체로부터 합성된 탄소를 슈 퍼커패시터용 전극재료로 활용하기 위해서는 유도된 다양 한 작용의 종류를 밝혀내고 어떠한 전해질에서 전하 저장 반응에 기여하는지 연구할 필요가 있다. 본 연구는 다양한 pH를 갖는 전해질을 활용하여 두 폴리머 전구체로부터 유 도된 탄소의 작용기 반응을 통해 전하 저장 거동에 대해 분 석하였다. 다양한 전해질에서의 전극들의 전기화학 거동 비교를 통해 에너지 저장 성능이 높은 전극과 전해질을 찾

고 우수한 에너지 저장 재료에 대해 토론하였다.

2. Experimental

2.1 Material preparation

다공성 탄소를 합성하기 위한 전구체 물질로써 두 가지 종류의 폴리머 polyvinylidene chloride-resin(PVDC-resin; F216, Asahi Kasei)와 polyvinylidene fluoride(PVDF; Sigma-Aldrich Inc.)를 사용하였다. PVDC-resin과 PVDF전구체는 탄소 주사슬에 이종원자 가 결합되어 있는 형태로 열분해 를 통해 탄화(carbonization)된다. 열분해 공정을 위하여 수 평 튜브 전기로를 이용하여 질소 기체를 흘려주며(유량: 300 cm³ min⁻¹) 700°C의 조건에서 2시간 열처리하였다. PVDC-resin 전구체는 N, 분위기에서 600℃ 열처리시 결합 된 수소가 방출되면서 나노크기의 기공이 생성된다[13]. 따 라서 본 연구에서는 700°C에서 열처리를 통하여 기공을 갖 는 탄소를 합성하였다. 등온 구간까지의 상승 속도와 실험 후 상온으로 하강 속도는 5°C min⁻¹으로 고정하였다. 합성 된 탄소는 추가적인 정제과정 없이 전극 활물질로 활용하 였고 PVDC-resin과 PVDF로부터 합성된 샘플들은 각각 PVDC-carbon과 PVDF-carbon으로 명명되었다.

2.2 Material characterization

전계 방출 주사현미경(FE-SEM; SU9220, Hitachi, Japan)을 이용하여 5 kV의 가속 전압과 10 mm의 작동 거리에서 합 성된 탄소 샘플들의 표면 형상 및 입자 크기를 관찰하였 다. 각 탄소 샘플들의 비표면적, 전체 기공 부피, 기공 분포 도 측정을 위하여 기체 흡착기(gas sorption analyzer)를 사 용하여 N, 기체의 전극 표면으로 흡/탈착량을 상대압력을 달리하여(P/P_0) 측정하였다. 기체 흡착 실험 전 탄소 샘플 표면에 흡착되어 있는 물 분자 또는 불순물을 제거하기 위 하여 300°C에서 3 h 동안 진공 분위기에서 열처리하여 탈 기(degas)하였다. 탈기 후 탄소 샘플들에 대해 측정된 N, 등 온 흡착곡선(isotherm)으로부터 multi-point Brunauer-Emmett-Teller(BET) 이론을 바탕으로 비표면적을 계산하였 다. 제조된 탄소의 전체 기공 부피(total pore volume)는 N₂ 기체의 상대 기압(P/P₀) = 0.95 부근에서의 N, 흡착량으로 부터 구하였다. 기공의 크기 별 분포는 Quenched solid density functional theory(QSDFT) 계산 모델을 이용하여 얻 었다. 합성된 탄소를 구성하는 조성과 생성된 작용기 (functional groups) 분석을 위하여 X-선 광전자 분광 분석기 (X-ray photoelectron spectroscopy)(XPS; Quantera SXM, ULVAC-PHI, Japan)를 사용하였다. XPS 분석기는 단색 (monochromatic) Al Kα X-ray source(24.6 W)를 사용하였다. survey 스캔 모드로 측정한 스펙트럼으로부터 탄소의 구성 원소 성분을 분석하였고, high resolution 스캔 모드에서 얻 은 스펙트럼으로부터 탄소 샘플에 존재하는 다양한 작용 기(functional group)를 분석하였다.

2.3 Electrochemical measurement

합성된 샘플들의 전기화학적 거동 및 성능 분석을 위해 서 합성된 탄소 샘플을 활물질로 하는 전극을 제조하였다. 샘플은 polytetrafluoroethylene(PTFE)(particle size < 350 μm) 바인더 및 전도성 탄소인 carbon black(KETJENBLACK EC-600JD, AkzoNobel)과 함께 85 : 10 : 5의 질량비로 마노유발 (agate mortar)과 마노유봉(agate pestle)을 이용하여 물리적 으로 혼합하여 전극 물질을 준비하였다. 전기화학 실험은 삼 전극 셀(three-electrode cell)의 반쪽 전지 형태(half-cell set-up)로 구성하였다. 작동 전극(working electrode)으로 합 성된 탄소 전극을 사용하였으며 상대 전극(counter electrode) 으로 코일 백금선(coiled platinum wire)을 사용하였다.

다양한 pH의 전해질에서 전극의 전기화학 거동 관찰을 위하여 3가지 전해질을 사용하였다. 중성 전해질로서 0.5 M Na,SO4(ACS, 99.0%, Alfa Aesar)용액을 준비하였고, 산성 전 해질로 1 M H₂SO₄(98%, DAEJUNG) 용액을 염기성 전해질 로 6 M KOH(pellets, 85%, Alfa Aesar) 용액을 사용하였다. 사용하는 전해질에 따라 포텐셜 측정을 위한 기준 전극 (reference electrode)을 달리하였으며, 산성과 중성 전해질 에서는 saturated calomel electrode(SCE; -0.241 V vs. normal hydrogen electrode(NHE))를 사용하였고 측정된 포 텐셜 값은 다음 식으로부터 NHE를 기준으로 표시하였다 (E_{NHE} = E_{SCE} + 0.241 V). 염기성 전해질에서는 기준 전극으 로 mercury/mercury oxide electrode(Hg/HgO; -0.098 V vs. NHE)를 사용하였고, 측정된 포텐셜 값은 NHE를 기준으로 나타내었다($E_{\rm NHE} = E_{\rm Hg/HgO} + 0.098$ V). 전기화학 실험 시 전 극 기판에서의 부반응을 막기 위해서 중성과 염기성 전해 질에서는 전극 기판소재로 nickel mesh를 사용하였고, 산성 전해질의 경우에는 stainless steel mesh를 사용하였다.

탄소 전극의 비전기용량(specific capacitance) 및 고출력 조건에서의 율속 특성(rate capability)을 측정하기 위하여 cyclic voltammetry 방법으로 전압 주사속도를 달리하여 (5 mV s⁻¹, 10 mV s⁻¹, 20 mV s⁻¹, 50 mV s⁻¹) 반응 전류를 측 정하였다. 비전기용량은 가장 느린 주사속도인 5 mV s⁻¹에 서의 voltammogram으로부터 측정하였다. 전극과 전해질 계면에서의 전기화학 반응 분석을 위하여 전기화학 임피 던스 분광법(electrochemical impedance spectroscopy; EIS) 을 실시하였고 개회로 전압(open circuit potential)조건에서 5 mV 진폭의 사인 파형(sine wave)을 가하여 1000 kHz-0.1 Hz의 주파수 범위에서 실시하였다.

3. Results and Discussion

두 폴리머 전구체인 PVDC-resin과 PVDF로부터 유도된 탄소의 표면 형상을 FE-SEM으로 관찰한 결과 유도된 탄소

Fig. 1. (a) PVDC-resin으로부터 유도된 탄소(PVDC-carbon)와 (b) PVDF로부터 유도된 탄소(PVDF-carbon)의 FE-SEM 이미지 . 두 가지 합성된 탄소에 대해 측정한 (c) N₂ 흡 / 탈착 등온곡선 (isotherm)과 (d) 기공 분포도 (pore size distribution)

Table 1. PVDC-resin 과 PVDF 로부터 합성된 탄소의 여러가지
형상학적 특성값. ^amulti-point BET method로부터 계산
한 비표면적. ^b N₂ 상대 기압 (P/P₀)=0.95 에서의 N₂ 흡착
량으로부터 계산한 전체 기공 부피. ^cQSDFT method로
계산한 전체 micropore 의 부피

Sample	$\frac{S_{BET}^{a}}{(m^2 g^{-1})}$	V_{total}^{b} (cm ³ g ⁻¹)	V_{micro}^{c} (cm ³ g ⁻¹)
PVDC-carbon	798	0.49	0.23
PVDF-carbon	969	0.57	0.28

는 모두 수백 μm의 분말들로 모두 매끈한 표면을 갖는 것 이 관찰되었다(Fig. 1a-b). PVDC-resin 전구체는 탄소 원소 로 구성된 주사슬을 갖고 H와 Cl가 매달려있는 화학 결합 을 갖고 있으며, PVDF 또한 유사한 형태의 탄소 주사슬에 H와 F가 결합된 구조를 갖고 있다. 두 폴리머 전구체를 열 처리 하는 동안 주사슬에 연결된 원소들은 기체의 형태로 방출되며 남은 자리가 기공으로 역할을 하여 다공성의 탄 소가 형성된다[23]. 탄화 과정에서 두 전구체의 기공 형성 반응이 일어남에도 불구하고 표면에서 기공이 관찰되지 않 은 것을 볼 때 탄화과정에서 생성되는 기공들은 대부분 작 은 크기의 마이크로 기공(지름 < 2 nm) 또는 메조 기공(2 nm < 지름 < 50 nm)들이 대부분 생성된다고 생각된다.

합성된 탄소에 생성된 기공들을 정량적으로 분석하기 위 하여 두 탄소 샘플(PVDC-carbon, PVDF-carbon)에 대해서 N₂ 흡/탈착 곡선을 측정하였고, 흡탈착 결과부터 기공의 크 기 별 분포를 계산하였다(Fig. 1c-d and Table 1). 두 샘플들 의 등온 흡착곡선(isotherm)은 유사한 경향을 보였다(Fig. 1c).

Fig. 2. 두 합성 탄소에 대해 측정한 X- 선 광전자 분광법 결과: PVDC-resin 으로부터 유도된 탄소(PVDC-carbon)의 (a) survey 스캔 결과와 (b) O 1s및 (c) N 1s의 고해상도 스캔 결과. PVDF 로부터 유도된 탄소 (PVDF-carbon)의 (d) survey 스캔 결과와 (e) O 1s 의 고해상도 스캔 결과

즉, 낮은 상대 압력범위(0 < *P/P*₀ < 0.1)에서 흡착량이 급격 히 증가하고 이후 서서히 증가하는 흡착량을 보여주었다 [24]. 초기 급격한 흡착량 증가는 N₂기체가 탄소 표면의 마 이크로 기공으로 흡착하며 나타나는 것으로 두 탄소에 존 재하는 기공 대부분은 마이크로 기공으로 구성된 것을 알 수 있다. 중간 상대압력 범위에서 흡/탈착 곡선사이의 이 력곡선(hysteresis loop)이 거의 나타나지 않는데 이는 메조 기공량이 매우 낮음을 의미한다(Fig. 1c)[25]. 등온 흡착곡 선으로부터 QSDFT 방법으로 재구성한 기공 크기 별 분포 (pore size distribution)도를 보면 두 탄소샘플내 대부분의 기 공은 micro 크기의 기공임을 알 수 있다(Fig. 1d). 두 샘플의 기공분포도를 비교해보면 PVDF-carbon에 생성된 마이크 로 기공양이 PVDC-carbon에 형성된 micropore 양보다 더 많은 것을 알 수 있으며 이는 비표면적 및 전체 형성된 기 공 양의 향상에 기여하였다(Fig. 1d and Table 1).

합성된 두 탄소를 구성하는 원소의 비율과 O, N을 포함 하는 작용기의 분율을 분석하기 위하여 XPS 분석을 실시 하였다(Fig. 2 and Table 2). PVDC-carbon 샘플은 탄소 이외 에도 O와 N이 존재하였는데, 그 이유는 순수한 PVDC 가

Table 2. 합성된 두 탄소의 구성 성분분석 결과 (XPS 의 survey 스캔으로부터 계산)

	PVDC-resin	PVDF-derived		
Element (at. %)	derived carbon	carbon		
	(PVDC-carbon)	(PVDF-carbon)		
С	91.27	93.80		
0	5.12	5.16		
Ν	3.6	0		
F	0	1.04		

	Peak	Functional groups	B.E.	At.%
	O 1s	Quinone	531.3	28.8
		Phenol OH Carboxylic acid	532.5	33.0
		ОН	533.5	37.4
PVDC-resin		Chemisorbed oxygen and/or water	535.0	0.8
derived carbon (PVDC- carbon)	N 15	Pyridinic-N	398.4	31.0
		Pyrrolic N H	399.7	19.0
		Quaternary N	401.0	47.1
		Oxide-N	403.0	2.9
PVDF-derived carbon (PVDF- carbon)	O 1s	Quinone	531.9	35.1
		Phenol OH Carboxylic acid	534.0	21.3
		OH	533.0	37.8
		Chemisorbed oxygen	535.7	5.8

Table 3. 합성된 두 탄소(PVDC-carbon와 PVDF-carbon)에 존재 하는 작용기 (functional groups)의 구성 비율(XPS의 고 해상도 스캔 모드로부터 측정)

아닌 resin이 첨가된 PVDC 전구체가 사용되었기 때문이다 (Fig. 2a and Table 2). 따라서, PVDC-carbon에는 O 또는 N 을 포함하는 작용기가 존재할 것으로 생각된다. 한편, PVDFcarbon의 경우에는 탄소 이외에 O와 F가 확인되었다(Fig. 2d). 따라서, PVDF-carbon 샘플의 경우에는 패러데익 반응 을 하는 작용기는 O를 포함하는 작용기만 생성될 것으로 기대된다(Fig. 2a and Table 2).

탄소에 존재하는 작용기의 비율은 작용기를 포함하는 원 소의 고해상도 스캔으로부터 구하였다(Table 3). PVDC-resin 로부터 유도된 탄소에서 O와 N을 포함하는 작용기가 전기 화학 성능에 기여할 것이므로 O 1s 피크와 N 1s 피크를 고 해상도 스캔으로부터 구하였고 O를 포함하는 작용기는 carboxyl acid, phenol and/or ether, quinone, chemisorbed oxygen and/or water 순서의 비율로 존재하는 것이 확인되었 다. 한편, N을 포함하는 작용기는 N 1s 피크의 deconvolution 으로부터 분석하였고, quaternary N, pyridinic N, pyrrolic and/or pyridine N, oxide N 순서의 비율로 존재하는 것이 확 인되었다. PVDF로부터 유도된 탄소의 경우에는 O포함 작 용기는 carboxyl acid, quinone, phenol and/or ether, chemisorbed oxygen and/or water 슈의 비율로 존재하였다. PVDC-carbon과 달리 N을 포함하는 작용기는 존재하지 않 았다. 합성된 두 샘플 모두 O를 포함하는 작용기로 carboxyl acid가 제일 많이 존재하며, PVDC-carbon에서는 phenol이 두 번째로 많이 존재하고 PVDF-carbon에서는 quinone이 두 번째로 많이 존재하였다.

합성된 탄소 전극에 존재하는 작용기에 따라 전기화학 적 거동의 차이를 분석하기 위하여 다른 pH의 3가지 전해 질(6 M KOH, 0.5 M Na₂SO₄, 1 M H₂SO₄)에서 cyclic voltammogram 전기화학 실험을 실시하였다(Fig. 3). 두 가 지 탄소 모두에서 가장 높은 비율을 갖는 O 작용기인 carboxyl acid는 염기성 전해질에서 산화환원의 패러데익 반응을 일 으키며 산성 전해질에서는 반응하지 않는다[26]. 따라서, 합성된 두 탄소 전극은 염기성 전해질인 KOH 용액에서

Fig. 3. 세가지 다른 전해질 (1 M H₂SO₄, 0.5 M Na₂SO₄, 6 M KOH 용액) 에서 측정한 (a) PVDC-carbon 샘플과 (b) PVDF- carbon 샘플의 cyclic voltammogram(주사속도: 5 mV s⁻¹).

399

	$1 \text{ M H}_2\text{SO}_4$	$0.5 \text{ M Na}_2 \text{SO}_4$	6 M KOH
PVDC-resin 유도된 탄소 (PVDC-carbon)	81 F g ⁻¹	21 F g ⁻¹	178 F g ⁻¹
PVDF 에서 유도된 탄소 (PVDF-carbon)	205 F g ⁻¹	83 F g ⁻¹	213 F g ⁻¹

Table 4. 두 탄소 전극에 대해 다양한 pH 전해질에서 측정한 비 전기용량

capacitive 충전 반응 이외에도 패러데익 반응으로 추가적 인 전하 저장을 할 것으로 생각된다. 한편, PVDC-carbon 샘 플의 O 작용기 중 두 번째로 높은 비율의 phenol groups 역 시 염기성 전해질에서 패러데익 반응을 일으키고 산성 용 액에서는 산화환원 하지 않는다. 반면, PVDF-carbon 샘플 에서 두 번째로 높은 비율의 O 작용기인 quinone은 산성 전 해질에서만 패러데익 반응을 한다[27]. 따라서, PVDF-carbon 전극은 산성 전해질에서 이온 흡/탈착의 capacitive 충전 이 외에도 추가적인 패러데익 반응으로 전하를 저장할 것으 로 기대되다.

PVDC-carbon 샘플은 N 작용기를 포함하고 있으며 그 중 Quaternary-N의 비율이 가장 높았다. Quaternary-N과 함께 oxide-N은 전하 저장의 패러데익 반응에는 관여하지 않지 만, 전극의 전기 전도성을 증가시켜 주므로 전극내 전자의 이동을 원활하게 해준다[28]. N 작용기 중 두 번째로 높은 비율의 pyridinic-N은 산성 용액에서 패러데익 반응을 하 고, 세 번째로 높은 비율인 pyrrolic-N은 알칼리 용액에서 패 러데익 반응을 한다.

전극에 존재하는 다양한 작용기들에 따라 전기화학 거 동의 변화를 살피기 위하여 다양한 pH의 전해질에서 두 탄 소 전극에 대해 cyclic voltammetry를 측정하였다(Fig. 3). 다 양한 전해질에서 측정된 두 탄소 전극의 비전기용량은 Table 4에 정리하였다. PVDC-carbon과 PVDF-carbon 샘플은 각 각 798 m² g⁻¹과 969 m² g⁻¹의 비슷한 비표면적을 가짐에도 불구하고 Na,SO4 전해질에서 PVDF-carbon 샘플이 약 4배 높은 용량을 보였다. PVDC-resin으로부터 유도된 탄소 전 극에 낮은 비전기용량을 보이는 이유는 넓은 비표면적에 도 불구하고 탄소에 존재하는 많은 양의 작은 마이크로 기 공 때문인 것으로 생각된다(Fig. 1b). Na, SO4 전해질에서의 voltammogram을 보면 양의 분극에서 반응 전류 값이 매우 낮은 것이 확인되는데 이는 큰 크기의 SO4²⁻이온이 전극 표 면에 거의 흡착되지 않는 것을 의미하며, 표면에 존재하는 작은 기공이 사면체 구조의 큰 크기의 SO₄²⁻ 이온의 출입을 어렵게 하였기 때문으로 생각된다.

산성 H₂SO₄ 전해질에서 두 탄소 전극의 비 전기용량은 모 두 중성 전해질에서의 비 전기용량보다 향상되었다(Table 4). 특히, 두 전극의 voltammogram 모두 0.43 V(vs. NHE) 부 근에서 산화/환원 반응의 피크를 보여주었다(Fig. 3a-b). 0.43 V(vs. NHE) 부근의 산화/환원 피크는 quinone/ hydroquinone의 redox 반응 때문이며 합성된 두 탄소 모두 에 높은 비율로 존재하는 quinone 작용기가 전해질내 높은 농도의 H⁺ 이온과 반응하여 추가적인 패러데익 반응으로 전하 저장에 기여했기 때문으로 생각된다[29]. PVDC-carbon 샘플내 pyridine-N 작용기도 산성 전해질에서 패러데익 반 응을 하므로, 전하 저장에 기여를 한 것으로 생각된다[26]. PVDC-carbon내 존재하는 N 작용기가 전하 저장에 기여함 에도 측정된 비전기용량이 PVDF-carbon 보다 더 낮은 값 을 가지는 이유는 합성된 탄소에 존재하는 ultra-micropore 때문으로 생각된다. 즉, H,SO4 전해질 내 SO42-이온이 전극 표면의 작은 기공으로 인해 흡/탈착하기 어려웠기 때문으 로 생각된다(Fig. 3a). H,SO4 전해질에서 PVDC-carbon 샘플 의 voltammogram 개형은 Na₂SO₄ 전해질에서의 그래프 개 형과 상당히 유사하게 나타나며, 표면의 ultra-micropore로 인해 이온 흡착이 어려울 것이라는 가설을 뒷받침한다(Fig. 3a)[30].

한편, 알칼리 전해질인 KOH용액에서는 H₂SO₄전해질과 는 달리 뚜렷한 산화/환원 피크가 관찰되지 않았다(Fig. 3). KOH 용액에서 측정된 반응 전류가 비교적 평탄하게 나타 나는 이유는 패러데익 반응이 일어나는 화학 반응 메커니 즘이 다르기 때문으로 생각된다[31]. PVDC-carbon에 높은 분율로 존재하는 O 작용기인 carboxylic acid와 phenol은 KOH 전해질에 존재하는 OH⁻ 이온과 패러데익 반응으로 전하를 저장한다[19]. 두 전극 모두 KOH 용액에서는 H₂SO₄ 전해질에서보다 측정된 비전기용량이 더 높게 나타났는데 그 이유는 두 탄소 샘플 모두 phenol과 carboxyl acid 같이 염 기성전해질에서 반응하는 작용기의 비율이 산성전해질에 서 작용하는 작용기인 quinone보다 크기 때문에 염기성 전 해질에서 높은 용량이 나타나는 것으로 생각된다(Fig. 3). PVDC-carbon에 존재하는 pyrrolic-N 또한 염기성 전해질에 서 전하저장반응에 기여하였기 때문으로 해석된다.

KOH 전해질에서 높은 비전기용량이 나타나는 또 다른 이유는 KOH 전해질 이온들의 전극표면으로 흡착 반응이 다른 전해질에 비해 쉽게 일어났기 때문으로 생각된다. Voltammogram에서 양의 분극의 높은 반응 전류는 음이온 의 흡착이 전극 표면으로 쉽게 일어났다는 것을 의미한다. 산성, 중성 전해질에 존재하는 3차원 구조인 SO₄²⁻ 이온의 수화된 크기(hydration ion size)보다 1차원 선형 구조인 OH⁻ 의 수화이온의 크기가 작아서 작은 기공으로의 흡착이 용 이하다[32]. 게다가, H⁺와 OH⁻ 이온은 용매인 H₂O에서 proton hopping 과정으로 통해 H₃O⁺상태로 이동하여 다른 이온에 비해 매우 큰 이온전도도를 가지므로 전하저장 용 량을 높일 수 있다[33]. 양이온의 이온 전도도의 경우 K⁺ 이 온(73.5 S cm² mol⁻¹)이 Na⁺ 이온(50.11 S cm² mol⁻¹)보다 더 높아 전하저장 반응을 향상시키므로 K⁺ 이온 또한 비전기 용량 향상에 기여한 것으로 생각된다[33].

두 탄소 전극(PVDC-carbon, PVDF-carbon)에 대해 여러

Fig. 4. (a) PVDC-carbon 와 (b) PVDF-carbon 에 대해 3 가지 다 른 pH 의 전해질 (H₂SO₄, Na₂SO₄, KOH) 에서 전압 주사 속도를 달리하여 (5 mV s⁻¹, 10 mV s⁻¹, 20 mV s⁻¹, 50mV s⁻¹) 측정한 비전기용량 값을 5 mV s⁻¹ 에서 측정한 비전기 용량을 기준으로 측정한 율속 특성.

pH의 전해질에서 율속 특성 즉, 고속에서 비전기용량의 유 지율을 분석하였다(Fig. 4). 율속 특성 분석을 위해 5 mV s⁻¹의 주사속도에서 측정한 비 전기용량 대비 10 빠른 주사속도 (50 mV s⁻¹)에서 용량의 보존율을 퍼센트로 계산하였다. PVDC-carbon 샘플과 PVDF-carbon 샘플은 KOH 전해질에 서 각각 69%, 80%의 가장 높은 율속 특성을 보였다. KOH 용 액에서의 높은 율속특성은 앞에서 언급한 것처럼 전해질 을 구성하는 양이온(K⁺)의 높은 이온전도도와 음이온(OH⁻) 의 선형적인 구조가 전해질 이온의 전극 표면으로 흡/탈착 반응을 용이하게 하였기 때문으로 생각된다. 또한 모든 전 해질에서 PVDF-carbon 샘플이 PVDC-carbon 샘플의 율속 특성보다 높았다. PVDF-carbon 샘플의 높은 율속은 탄소 전극 표면에 존재하는 기공의 크기가 PVDC-carbon의 기공 보다 상대적으로 더 컸기 때문으로 생각된다. 두 탄소 전극 모두 H₂SO₄ 용액에서 Na₂SO₄ 용액보다 높은 율속 특성을 보 이는 이유는 두 전해질 모두 큰 크기의 음이온(SO₄²⁻)으로 구성되어 있음에도 불구하고 작은 크기의 H⁺ 이온 proton hopping 반응이 H₂SO₄ 전해질에서 일어나 보다 용이하게 충/방전 반응이 일어났기 때문으로 생각된다.

4. 결 론

탄소 주사슬에 이종원소들이 매달려 있는 구조의 PVDCresin과 PVDF 두 폴리머 전구체는 열분해에 의해서 육각형 고리 구조의 탄소가 형성되며 동시에 이종원소들이 방출 되며 마이크로 크기의 기공을 형성하여 다공성 탄소로 변 환된다. 이러한 다공성 탄소는 높은 비표면적으로 이온의 흡/탈착에 유리하여 슈퍼커패시터용 탄소 전극으로 유리 하다. 게다가 폴리머 전구체를 구성하는 여러가지 이종원 소들은 탄화 후 작용기로 남아 전극으로 사용될 때 패러데 익 반응으로 추가적인 전하 저장에 기여할 수 있다. PVDCresin으로부터 유도된 탄소에서는 O와 N를 포함하는 작용 기가 생성되었고, PVDF 전구체의 경우에는 O를 포함하는 표면 작용기가 형성되었다.

합성된 두 탄소 전극 모두 중성 전해질(0.5 M Na,SO₄)에 서 가장 낮은 비전기용량을 보였는데 이는 3차원 구조의 큰 크기의 음이온(SO₄⁻)이 작은 크기의 기공 때문에 흡/탈착 이 어려워졌기 때문이다. 또한, PVDC-carbon 전극의 비전 기용량이 PVDF-carbon 전극보다 더 낮은 값을 가지는데, 그 이유는 PVDC-carbon에 생성된 매우 작은 마이크로 기 공이 이온 흡착을 더욱 방해하였기 때문으로 생각된다. 산 성전해질(1 M H,SO4)에서의 비전기용량은 중성 전해질에 서 보다 증가하였으며 이는 탄소에 생성된 quinone 작용기 의 산화/환원 반응이 전하 저장 반응에 기여하였기 때문이 다. 염기성 전해질인 6 M KOH 용액에서 두 탄소 전극 모두 높은 비전기용량을 보였는데 이는 빠른 이온 전도도의 K⁺ 이온과 1차원 선형 구조인 OH-로 구성된 전해질내 이온들 이 전극 표면으로 충방전이 쉽게 일어났기 때문이다[32]. KOH 전해질의 용이한 이온 흡/탈착으로 두 탄소 전극 모 두 KOH 전해질에서 높은 율속 특성이 나타났다. H₂SO₄ 전 해질의 경우 작은 크기의 H⁺이온의 전극으로 흡/탈착이 용 이하기 때문에, Na, SO4 전해질에서 보다 높은 율속 특성을 보였다. 따라서, PVDC-resin과 PVDF 폴리머로부터 유도된 탄소를 슈퍼커패시터 용 전극으로 사용하기 위해서는, 전 해질의 pH에 따른 전극의 전기화학거동을 바탕으로 적절 한 전해질을 선택하여 활용되어야 한다.

후 기

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (Ministry of Science, ICT & Future Planning) (NRF-2021R1A4A2001658; NRF-2022R1A2C1009922).

REFERENCES

- E. Frackowiak, F. Béguin, Supercapacitors: Materials, Systems and Applications, Poznan: Wiley-VCH Verlag GmbH & Co (2013).
- B.E. Conway, "Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications," Springer Science & Business Media, 2013.
- A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, and D. Aurbach, "Carbon-based Composite Materials for Supercapacitor Electrodes: A Review," *Journal of Materials Chemistry A*, Vol. 5, 2017, pp. 12653-12672.
- W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, and J. Liu, "Battery-supercapacitor Hybrid Devices: Recent Progress and Future Prospects," *Advanced Science*, Vol. 4, 2017, pp. 1600539.
- Z.S. Iro, C. Subramani, and S. Dash, "A Brief Review on Electrode Materials for Supercapacitor," *International Journal of Electrochemical Science*, Vol. 11, 2016, pp. 10628-10643.

- R. Yan, M. Antonietti, and M. Oschatz, "Toward the Experimental Understanding of the Energy Storage Mechanism and Ion Dynamics in Ionic Liquid Based Supercapacitors," *Advanced Energy Materials*, Vol. 8, 2018, 1800026.
- 7. H. Marsh and F.R. Reinoso, "Activated Carbon," Elsevier, 2006.
- K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, 1988.
- E. Frackowiak, "Carbon Materials for Supercapacitor Application," *Physical Chemistry Chemical Physics*, Vol. 9, 2007, pp. 1774-1785.
- I.-S. Son, Y. Oh, S.-H. Yi, W.B. Im, and S.-E. Chun, "Facile Fabrication of Mesoporous Carbon from Mixed Polymer Precursor of PVDF and PTFE for High-power Supercapacitors," *Carbon*, Vol. 159, 2020, pp. 283-291.
- B. Hwang and S.-E. Chun, "Fabrication of Mesoporous Carbon from Polyvinylidene Chloride (PVDC)-resin Precursor with Mg (OH) ₂ Template for Supercapacitor Electrode," *Journal of the Korean Institute of Surface Engineering*, Vol. 52, 2019, pp. 326-333.
- I.-S. Son, S.-H. Yi, and S.-E. Chun, "Synthesis of Hydrophilic Hierarchical Carbon via Autonomous SiO₂ Etching by Fluorinated Polymers for Aqueous Supercapacitor," *International Journal of Energy Research*, Vol. 45, 2021, pp. 13836-13850.
- B. Hwang, S.-H. Yi, and S.-E. Chun, "Dual-role of ZnO as a Templating and Activating Agent to Derive Porous Carbon from Polyvinylidene Chloride (PVDC) Resin," *Chemical Engineering Journal*, Vol. 422, 2021, 130047.
- Y. Yang, A. Centrone, L. Chen, F. Simeon, T.A. Hatton, and G.C. Rutledge, "Highly Porous Electrospun Polyvinylidene Fluoride (PVDF)-based Carbon Fiber," *Carbon*, Vol. 49, 2011, pp. 3395-3403.
- K.-S. Kim and S.-J. Park, "Synthesis of Nitrogen Doped Microporous Carbons Prepared by Activation-free Method and Their High Electrochemical Performance," *Electrochimica Acta*, Vol. 56, 2011, pp. 10130-10136.
- C. Wang, B. Yan, J. Zheng, L. Feng, Z. Chen, Q. Zhang, T. Liao, J. Chen, S. Jiang, C. Du, and S. He, "Recent Progress in Template-assisted Synthesis of Porous Carbons for Supercapacitors," *Advanced Powder Materials*, Vol. 1, No. 2, 2022, 100018.
- A. Hossain, P. Bandyopadhyay, P.S. Guin, and S. Roy, "Recent Developed Different Structural Nanomaterials and Their Performance for Supercapacitor Application," *Applied Materials Today*, Vol. 9, 2017, pp. 300-313.
- C.A. Toles, W.E. Marshall, and M.M. Johns, "Surface Functional Groups on Acid-activated Nutshell Carbons," *Carbon*, Vol. 37, 1999, pp. 1207-1214.
- Y.J. Oh, J.J. Yoo, Y.I. Kim, J.K. Yoon, H.N. Yoon, J.-H. Kim, and S.B. Park, "Oxygen Functional Groups and Electrochemical Capacitive Behavior of Incompletely Reduced Graphene Oxides as a Thin-film Electrode of Supercapacitor," *Electrochimica Acta*, Vol. 116, 2014, pp. 118-128.
- 20. B. Han, G. Cheng, Y. Wang, and X. Wang, "Structure and Functionality Design of Novel Carbon and Faradaic Electrode Mate-

rials for High-performance Capacitive Deionization," *Chemical Engineering Journal*, Vol. 360, 2019, pp. 364-384.

- Y. Zhao, A. Wang, L. Shen, L. Xiao, and L. Hou, "Carbohydrate Assisted Preparation of N-doped Hierarchically Porous Carbons from Melamine Resin via High Internal Phase Emulsion Template," *Microporous and Mesoporous Materials*, Vol. 341, 2022, 112039.
- R. Jansen and H. Van Bekkum, "XPS of Nitrogen-containing Functional Groups on Activated Carbon," *Carbon*, Vol. 33, 1995, pp. 1021-1027.
- B. Xu, S. Hou, M. Chu, G. Cao, and Y. Yang, "An Activation-free Method for Preparing Microporous Carbon by the Pyrolysis of Poly(vinylidene fluoride)," *Carbon*, Vol. 48, 2010, pp. 2812-2814.
- B. Xu, F. Wu, S. Chen, G. Cao, and Z. Zhou, "A Simple Method for Preparing Porous Carbon by PVDC Pyrolysis," *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, Vol. 316, 2008, pp. 85-88.
- X. Chen, J. Zhang, B. Zhang, S. Dong, X. Guo, X. Mu, and B. Fei, "A Novel Hierarchical Porous Nitrogen-doped Carbon Derived from Bamboo Shoot for High Performance Supercapacitor," *Scientific Reports*, Vol. 7, 2017, pp. 1-11.
- Y.-H. Lee, K.-H. Chang, and C.-C. Hu, "Differentiate the Pseudocapacitance and Double-layer Capacitance Contributions for Nitrogen-doped Reduced Graphene Oxide in Acidic and Alkaline Electrolytes," *Journal of Power Sources*, Vol. 227, 2013, pp. 300-308.
- E. Calvo, N. Rey-Raap, A. Arenillas, and J. Menéndez, "The Effect of the Carbon Surface Chemistry and Electrolyte pH on the Energy Storage of Supercapacitors," *RSC Advances*, Vol. 4, 2014, pp. 32398-32404.
- G. Ferrero, A. Fuertes, and M. Sevilla, "From Soybean Residue to Advanced Supercapacitors," *Scientific Reports*, Vol. 5, 2015, pp. 1-13.
- M.T. Huynh, C.W. Anson, A.C. Cavell, S.S. Stahl, and S. Hammes-Schiffer, "Quinone 1 e⁻ and 2 e⁻/2 H⁺ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships," *Journal of the American Chemical Society*, Vol. 138, 2016, pp. 15903-15910.
- L. Eliad, E. Pollak, N. Levy, G. Salitra, A. Soffer, and D. Aurbach, "Assessing Optimal Pore-to-ion Size Relations in the Design of Porous Poly(vinylidene chloride) Carbons for EDL Capacitors," *Applied Physics A*, Vol. 82, 2006, pp. 607-613.
- Y. He, Y. Zhang, X. Li, Z. Lv, X. Wang, Z. Liu, and X. Huang, "Capacitive Mechanism of Oxygen Functional Groups on Carbon Surface in Supercapacitors," *Electrochimica Acta*, Vol. 282, 2018, pp. 618-625.
- C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, "A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors," *Chemical Society Reviews*, Vol. 44, 2015, pp. 7484-7539.
- J.G. Speight, Lange's Handbook of Chemistry, McGraw-Hill Education, 2017.