• Title/Summary/Keyword: porous CuO

Search Result 67, Processing Time 0.025 seconds

Antibacterial Properties of $Ag_2-Li_2O-CaO-TiO_2-P_2O_5$Porous Class Ceramics ($Ag_2-Li_2O-CaO-TiO_2-P_2O_5$계의 다공성 글라스 세라믹스의 항균 특성)

  • Kang, Won-Ho;Yoon, Young-Jin;Lee, Yong-Soo;Hong, Bum-Soo;Yeom, Gon;Kim, Chang-Soo;Seok, Man-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • Porous glass ceramics composed of $Ag_2-Li_2O-CaO-TiO_2-P_2O_5$-CaO with 0.05-1.5 mole CuO were prepared by melting and 2 step heat treatment for nucleation at $610^{\circ}C$ and crystallization at $840^{\circ}C$. $\beta$-$Ca_3(PO_4)_2$crystal phase was selectively leached out in 1N-HC1 solution for 3 days, leaving $AgTi_2(PO_4)_3$and $LiTi_2(PO_4)_3$crystal phases. Antibacterial effects and characterizations of the porous glass ceramics were investigated. Staphylococcus aureus and Salmonella typhi bacteroa were used in this study. It was found that the resultant porous glass ceramics show excellent bacteriostatic properties.

  • PDF

The Effect of TiO2 Addition on Low-temperature Sintering Behaviors in a SnO2-CoO-CuO System

  • Jae-Sang Lee;Kyung-Sik Oh;Yeong-Kyeun Paek
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300℃ is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950℃. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950℃.

Three-dimensional porous films consisting of copper@cobalt oxide core-shell dendrites for high-capacity lithium secondary batteries (리튬이차전지용 고용량 음극을 위한 구리@코발트산화물 코어-쉘 수지상 기반 3차원 다공성 박막)

  • So-Young Joo;Yunju Choi;Woo-Sung Choi;Heon-Cheol Shin
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.104-114
    • /
    • 2023
  • Three dimensional (3D) porous structures consisting of Cu@CoO core-shell-type nano-dendrites were synthesized and tested as the anode materials in lithium secondary batteries. For this purpose, first, the 3D porous films comprising Cu@Co core-shell-type nano-dendrites with various thicknesses were fabricated through the electrochemical co-deposition of Cu and Co. Then the Co shells were selectively anodized to form Co hydroxides, which was finally dehydrated to get Cu@CoO nanodendrites. The resulting electrodes exhibited very high reversible specific capacity almost 1.4~2.4 times the theoretical capacity of commercial graphite, and excellent capacity retention (~90%@50th cycle) as compared with those of the existing transition metal oxides. From the analysis of the cumulative irreversible capacity and morphology change during charge/discharge cycling, it proved that the excellent capacity retention was attributed to the unique structural feature of our core-shell structure where only the thin CoO shell participates in the lithium storage. In addition, our electrodes showed a superb rate performance (70.5%@10.8 C-rate), most likely due to the open porous structure of 3D films, large surface area thanks to the dendritic structure, and fast electron transport through Cu core network.

Removal of NO Using CuO/3Al2O3 · 2SiO2 Catalyst Impregnated Ceramic Candle Filters (산화구리 촉매담지 세라믹 캔들필터를 이용한 NO 제거)

  • 홍민선;문수호;이재춘;이동섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.291-302
    • /
    • 2004
  • The CuO/$3AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters for nitrogen oxides removal were prepared by porous mullite($3AL_2O_3{\cdot}2SiO_2$) support and CuO catalyst deposited on this support to achieve uniformly dispersed CuO deposition, which are impregnated into the pores of available alumino-silicate ceramic candle filter. The CuO/3$AL_2O_3{\cdot}2SiO_2$ catalyst impregnated ceramic candle filters were characterized by XRD, BET, air permeability, pore size, SEM and catalytic tests in the reduction of NOx by NH$_3$. The observed effects of CuO/3$AL_2O_3{\cdot}2SiO_2$ impregnated ceramic candle filters in SCR reaction are as follows : (1) when the content of CuO catalyst increased further, activity of NO increased. (2) NO conversion at first increased with temperature and then decreased at high temperatures (above 40$0^{\circ}C$), possibly due to the occurrence of the ammonia oxidation reaction. (3) In pilot plant test for 3 months, NO conversion was greater than 90%.

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

Preparation of Porous Ceramic Bead using Mine Tailings and Its Applications to Catalytic Converter (광미(鑛尾)를 활용(活用)한 다공성 세라믹 비드 제조(製造) 및 촉매(觸媒) 변환기(變換機)로의 응용(應用))

  • Seo, Junhyung;Kim, Seongmin;Han, Yosep;Kim, Yodeuk;Lee, Junhan;Park, Jaikoo
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.38-45
    • /
    • 2013
  • The porous ceramic beads using mine tailing were prepared and applied to catalytic converter for NOx/SOx removal. Catalytic support was used synthesized mesoporous silica (SBA-15) which coated on surface. Internal structure for porous ceramic beads was composed of three-dimensional network structure and porosity was about 80%. In addition, the specific surface area for mesoporous silica(SBA-15) coated on converter was significantly increased 55 $m^2/g$ compared with 0.8 $m^2/g$ before coating. NOx/SOx removal experiment was performed using $V_2O_5$ and $V_2O_5$/CuO converter. NOx conversion ratio for $V_2O_5$/CuO converter was approximately increased 10% compared to $V_2O_5$ converter. In addition, catalytic converter of $V_2O_5$/CuO was shown to remove 95% of NOx and 90% of SOx at reaction temperature of $350^{\circ}C$, space velocity of 10000 $h^{-1}$ and $O_2$ concentrations of 5%, respectively.

Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode (다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응)

  • Kim, Jung Ryoel;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.247-255
    • /
    • 2014
  • $La_{0.8}Sr_{0.2}CuO_3$ powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and $10^{\circ}C$ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at $5^{\circ}C$, and methane, ethane and propane at $10^{\circ}C$ respectively. Optimal potentials for $CO_2$ reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (-1.5 V) for liquid products regardless of concentration and temperature.

Study on the production of porous CuO/MnO2 using the mix proportioning method and their properties (반응몰비에 따른 다공성 CuO/MnO2의 제조 및 특성 연구)

  • Kim, W.G.;Woo, D.S.;Cho, N.J.;Kim, Y.O.;Lee, H.S.
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.

Electrochemical properties of porous AuCu dendrite surface for the oxygen reduction reaction in alkaline solutions (알칼리 수용액에서 산소환원반응에 대한 다공성 AuCu 덴드라이트 표면의 전기화학적 특성 평가)

  • Kim, Min-Yeong;Lee, Jong Won;Cho, Soo Yeon;Park, Da Jung;Jung, Hyun Min;Lee, Joo Yul;Lee, Kyu Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Porous dendrite structure AuCu alloy was formed using a hydrogen bubble template (HBT) technique by electroplating to improve the catalytic performance of gold, known as an excellent oxygen reduction reaction (ORR) catalyst in alkaline medium. The rich Au surface was maximized by selectively electrochemical etching Cu on the AuCu dendrite surface well formed in a leaf shape. The catalytic activity is mainly due to the synergistic effect of Au and Cu existing on the surface and inside of the particle. Au helps desorption of OH- and Cu contributes to the activation of O2 molecule. Therefore, the porous AuCu dendrite alloy catalyst showed markedly improved catalytic activity compared to the monometallic system. The porous structure AuCu formed by the hydrogen bubble template was able to control the size of the pores according to the formation time and applied current. In addition, the Au-rich surface area increased by selectively removing Cu through electrochemical etching was measured using an electrochemical calculation method (ECSA). The results of this study suggest that the alloying of porous AuCu dendrites and selective Cu dissolution treatment induces an internal alloying effect and a large specific surface area to improve catalyst performance.

A study on the Manufacture of the CuO Powder from Copper Chloride Solution by Spray Pyrolysis Process (분무열분해법에 의한 구리염화물 용액으로부터 CuO 분말 제조에 관한 연구)

  • Yu, Jae-Geun;Park, Hui-Beom
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.58-67
    • /
    • 2002
  • In this study copper chloride(CuCl$_2$) solution was used as raw material to produce the fine copper oxide powder which has less than 1 $\mu\textrm{m}$ average particle size and has uniform particle size distribution by spray pyrolysis process. In the present study, the effects of reaction temperature, the injection speed of solution and air, the nozzle tip size and the concentration of raw material solution on the properties of produced powder were studied. The structure of the powder became much more compact with increasing the reaction temperature regardless of copper concentration of the raw material solution. The particle size of the powder increased accordingly with increasing the reaction temperature in case of 30 g/$\ell$ copper concentration of the solution. The particle size of the powder increased accordingly, and the surface structure of the powder became more porous with increasing the copper concentration of the raw material solution. When copper concentration in raw material solution was more than 100 g/$\ell$, all produced powder was CuCl regardless of reaction temperatures. When copper concentration in solution was below 30 g/$\ell$ and reaction temperature was higher than 90$0^{\circ}C$, CuO was the main phase. The surface of the powder tended to become porous with increasing the injection speed of solution. Particle size was increased and the surface of the powder showed severely disrupted state with increasing the nozzle tip size. The particle size was decreased and the particle size distribution was more uniform with increasing the air pressure through the nozzle.