Browse > Article
http://dx.doi.org/10.9713/kcer.2014.52.2.247

Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode  

Kim, Jung Ryoel (Department of Chemical and Biochemical Engineering, Dongguk University)
Lee, Hong Joo (Department of Chemical and Biochemical Engineering, Dongguk University)
Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
Publication Information
Korean Chemical Engineering Research / v.52, no.2, 2014 , pp. 247-255 More about this Journal
Abstract
$La_{0.8}Sr_{0.2}CuO_3$ powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and $10^{\circ}C$ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at $5^{\circ}C$, and methane, ethane and propane at $10^{\circ}C$ respectively. Optimal potentials for $CO_2$ reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (-1.5 V) for liquid products regardless of concentration and temperature.
Keywords
$La_{0.8}Sr_{0.2}CuO_3$; $CO_2$ Reduction; Electrochemical Reaction; Perovskite; Porous Electrode;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yi, C., "Advances of Carbon Capture Technology," KIC News, 12(1), 30-42(2009).
2 Park, J. H., Park, T. S., Baek, I. H. and Park, S., "The Status of Carbon Dioxide Capture and Storage Technology," Polyurethane, 3(1), 28-33(2010).
3 Park, J. H. and Baek, I. H., "Status and Prospect of Pre-combustion $CO_2$ Capture Technology," KIC News, 12(1), 3-14(2009).
4 Park, J. H. and Kim, J. P., "Research Trend of Oxygen Separation using Ion Transport Membrane," KIC News, 14(3), 14-24(2011).
5 Seo, B., Kim, J., Ahn, H. and Lee, K.-H., "The State of the Art of Membrane Technology for Separation of Carbon Dioxide from Flue Gas," KIC News, 14(3), 1-13(2011).
6 Vaska, L., Schreiner, S., Felty, R. A. and Yu, J. Y., "Catalytic Reduction of Carbon Dioxide to Methane and Other Species Via Formamide Intermediation: Synthesis and Hydrogenation of HC(O)$NH_2$ in the Presence of $[Ir(Cl)(CO)(Ph_3P)_2]$," J. Mol. Catal. 52(2), 11-16(1989).   DOI   ScienceOn
7 Kojima, F., Aida, T. and Inoue, S., "Fixation and Activation of Carbon Dioxide on Aluminum Porphyrin. Catalytic Formation of a Carbamic Ester from Carbon Dioxide, Amine, and Epoxide," J. Am. chem. Soc., 108(3), 391-395(1986).   DOI   ScienceOn
8 Parkinson, B. A. and Weaver, P. F., "Photoelectrochemical Pumping of Enzymatic $CO_2$ Reduction," Nature, 309, 148-149(1984).   DOI
9 Sullivan, B. P., Krist, K. and Guard, H. E., "Electrochemical and Electrocatalytic Reactions of Carbon Dioxide," Elsevier, Amsterdam(1993).
10 Kyriacou, G. and Anagnostopoulos, A., "Electroreduction of $CO_2$ on Differently Prepared Copper Electrodes: The Influence of Electrode Treatment on the Current Efficiences," J. Electroanal. Chem., 322(1-2), 233-246(1992).   DOI   ScienceOn
11 Wasmus, S., Cattaneo, E. and Vielstich, W., "Reduction of Carbon Dioxide to Methane and Ethene-an on-line MS Study with Rotating Electrodes," Electrochim. Acta, 35(4), 771-775(1990).   DOI   ScienceOn
12 K. W. Jr Frese, J., "Electrochemical Reduction of $CO_2$ at Intentionally Oxidized Copper Electrodes," Electrochem. Soc. 138(11), 3338-3344(1991).   DOI
13 Taguchi, S. and Aramata, A., "Surface-structure Sensitive Reduced $CO_2$ Formation on Pt Single Crystal Electrodes in Sulfuric Acid Solution," Electrochim. Acta, 39(17), 2533-2537(1994).   DOI   ScienceOn
14 Hara, K., Tsuneto, A., Kudo, A. and Sakata, T., "Electrochemical Reduction of $CO_2$ on a Cu Electrode under High Pressure Factors that Determine the Product Selectivity," J. Electrochem. Soc., 141(8), 2097-2103(1994).   DOI
15 Hori, Y., Murata, A. and Takahashi, R., "Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution," J. Chem. Soc. Faraday Trans. I, 85, 2309-2326(1989).   DOI
16 Cook, R. L., MacDuff, R. C. and Sammells, A. F., "On the Electrochemical Reduction of Carbon Dioxide at In Situ Electrodeposited Copper," J. Electrochem. Soc., 135(6), 1320-1326(1988).   DOI
17 Bandi, A., "Electrochemical Reduction of Carbon Dioxide on Conductive Metallic Oxides," J. Electrochem. Soc., 137(7), 2157-2160(1990).   DOI
18 Shibata, M., Yoshida, K. and Furuya, N., "Modification of the Lithium Metal Surface by Nonionic Polyether Surfactants: Quartz Crystal Microbalance Studies," J. Electrochem. Soc., 145(7), 2340-2348(1998).   DOI
19 Kudo, T., Obayashi, H. and Yoshida, M., "Rare Earth Cobaltites as Oxygen Electrode Materials for Alkaline Solution," J. Electrochem. Soc., 124(3), 321-325(1977).   DOI
20 Katoh, A., Uchida, H., Shibata, M. and Watanabe, M., "Design of Electrocatalyst for $CO_2$ Reduction V. Effect of the Microcrystalline Structures of CuSn and CuZn Alloys on the Electrocatalysis of Reduction," J. Electrochem. Soc., 141(8), 2054-2058(1994).   DOI
21 Park, J. H., Lee, S. I., Wee, J. H., Lim, J. H., Lee, J. K. and Chun, H. S., "A Study on Electrochemical Reduction of $CO_2$ by using the Perovskite Electrode," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 36, 751-758(1998).   과학기술학회마을
22 Shimizu, Y., Uemura, K., Matsuda, H., Miura, N. and Yamazoe, N., "Bi-Functional Oxygen Electrode Using Large Surface Area $La_{1-x}Ca_xCoO_3$ for Rechargeable Metal-Air Battery," J. Electrochem. Soc., 137(11), 3430-3433(1990).   DOI
23 Watanabe, M., Tomikawa, M. and Motoo, S., "Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode," J. Electroanal. Chem., 195(1), 81-93(1985).   DOI   ScienceOn
24 Bard, A. J. and Faulkner, L. R., "Electrochemical Methods: Fundamentals and Applications," p16-38, Wiley & Sons, New York (1980).
25 Tejuca, L. G. and Fierro, J. L. G., "Properties and Applications of Perovskite-Type Oxides," Marcel Dekker, New York(1993).
26 Ponec, V. "Selectivity in Catalysis by Alloys," Catal. Rev., 11, 41-70(1975).   DOI   ScienceOn
27 Noda, H., Ikeda, S., Oda, Y., Imai, K., Maeda, M. and Ito, K., "Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution," Bull. Chem. Soc. Jpn., 63, 2459-2462(1990).   DOI
28 Halmann, M., "Chemical Fixation of Carbon DioxideMethods for Recycling $CO_2$ into Useful Products," CRC Press, Boca Raton (1993).
29 Watanabe, M., Tomikawa, M. and Motoo, S., "Experimental Analysis of the Reaction Layer Structure in a Gas Diffusion Electrode," J. Electroanal. Chem., 195, 81-93(1985).   DOI   ScienceOn
30 Choi, C., Jung, Y., Kim, N., Pak, D., Chung, K., Kim, L. and Kwon, Y., "Analysis of Trace Copper Metal at The Electrode Consisting of Carbon Nanotube," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50(5), 933-937(2012).   과학기술학회마을   DOI   ScienceOn