• Title/Summary/Keyword: porosity ratio

Search Result 607, Processing Time 0.024 seconds

Changes in Physical Properties Especially, Three Phases, Bulk Density, Porosity and Correlations under No-tillage Clay Loam Soil with Ridge Cultivation of Rain Proof Plastic House

  • Yang, Seung-Koo;Seo, Youn-Won;Kim, Sun-Kook;Kim, Byeong-Ho;Kim, Hee-Kwon;Kim, Hyun-Woo;Choi, Kyung-Ju;Han, Yeon Soo;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.225-234
    • /
    • 2014
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique including recycling of the ridge and the furrow of a field for following crops in Korea. No-tillage systems affect soil physical properties such as three phase (solid, liquid, and air phase) and distribution of soil granular. Solid ratio of subsoil in 3-year of no-tillage (NT) treatment was remarkably lower than that in conventional (CT, 2-year of no-tillage + 1-year of tillage) treatment, while air ratio of subsoil in NT remarkably increased. Bulk density of subsoil in NT remarkably decreased. Porosity of subsoil in NT remarkably increased. Deviation of air phase, bulk density, and porosity of top soil and subsoil in NT remarkably decreased in NT compared with CT. Solid phase ratio and liquid phase ratio in NT and CT had positive (+) correlation. Solid phase ratio and air phase ratio in NT and CT had negative (-) correlation, also liquid phase ratio and air ratio had negative (-) correlation. Bulk density and liquid ratio in soil had positive (+) correlation at top soil and subsoil in NT. Bulk density and air ratio in soil had negative (-) correlation in NT and CT. Porosity and liquid phase ratio had negative (-) correlation, r =1), the significant value was lower in NT than in CT. Porosity and air phase ratio had positive (+) correlation (r =1).

Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics (기공형성제 크기 비(ratio)가 다공질 지르코니아 세라믹스의 기공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.537-543
    • /
    • 2008
  • Effect of template size ratio on porosity and mechanical properties of porous zirconia ceramics were investigated using two different size (${\sim}8{\mu}m$ and ${\sim}50{\mu}m$ in diameter) of polymethyl methacrylate-coethylene glycol dimethacrylate (PMMA) microbeads as sacrificial templates. Porosity of the porous zirconia ceramics increased with decreasing the template size ratio ($8{\mu}m: 50{\mu}m$) whereas the compressive and flexural strengths of the porous zirconia ceramics increased with increasing the template size ratio. By controlling the template size ratio, sintering temperature and sintering time, it was possible to produce porous zirconia ceramics with porosities ranging from 57% to 69%. Typical flexural and compressive strength values of porous zirconia ceramics with ${\sim}60%$ porosity were ${\sim}37\;MPa$ and ${\sim}85\;MPa$, respectively.

Effect of Process Parameters on Surface Roughness and Porosity of Direct Laser Melted Bead (DLM 공정시 공정변수에 따른 내부공극률과 표면조도 변화)

  • Kim, T.H.;Jang, J.H.;Jeon, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.575-580
    • /
    • 2011
  • Direct laser melting(DLM) is promising as a joining method for producing parts for automobiles, aerospace, marine and medical applications. An advantageous characteristic of DLM is that it affects the parent metal very little. The mechanical properties of parts made by DLM are strongly affected by the porosity and surface roughness of the laser melted beads. This is a systematic study of the effects of the porosity and surface roughness of laser melted beads using various processing parameters, such as laser power, scan rate and overlapping ratio of the fill spacing. The specimens were fabricated with 316L and 304L austenitic stainless steel powder. Dense parts with low porosity were obtained at low laser scan speed, as it increased the aspect ratio of the parental material and the depth of penetration. The variations of surface roughness were examined at various processing parameters such as overlapping ratio and laser power.

The Development of Welding Process to Prevent Porosity in MIG Welding of Al 6082-T6 (Al 6082-T6 MIG 용접에서 기공방지를 위한 용접공정 개발)

  • Baek, Sang-Yeub;Jung, Yon-Ho;Kim, Won-Il;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.28-34
    • /
    • 2010
  • This paper was described on investigation to prevent porosity in high speed MIG Welding of Al 6082-T6. Porosity measurement was carried out by using image analysis of micrographs with the help of an analysis software. The main parameter was arc length and torch progressive angle. The porosity ratio was increased as arc length was increased. The arc length was increased depending upon the output voltage. By proper selection of pulse waveform parameter, the stable arc of one pulse one drop was generated. The porosity ratio of optimum condition in one pulse one drop was lower than high voltage condition. When torch progressive angle was an angle of advance $10^{\circ}$, porosity ratio was minium.

Porosity Prediction of the Coating Layer Based on Process Conditions of HVOF Thermal Spray Coating (HVOF 용사 코팅 공정 조건에 따른 코팅층의 기공도 예측)

  • Jeon, Junhyub;Seo, Namhyuk;Lee, Jong Jae;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.478-482
    • /
    • 2021
  • The effect of the process conditions of high-velocity oxygen fuel (HVOF) thermal spray coating on the porosity of the coating layer is investigated. HVOF coating layers are formed by depositing amorphous FeMoCrBC powder. Oxygen pressure varies from 126 to 146 psi and kerosene pressure from 110 to 130 psi. The Microstructural analysis confirms its porosity. Data analysis is performed using experimental data. The oxygen pressure-kerosene pressure ratio is found to be a key contributor to the porosity. An empirical model is proposed using linear regression analysis. The proposed model is then validated using additional test data. We confirm that the oxygen pressure-kerosene pressure ratio exponentially increases porosity. We present a porosity prediction model relationship for the oxygen pressure-kerosene pressure ratio.

Effect of Clay-Mineral Composition on Flexural Strength of Clay-based Membranes (점토 광물 조성이 점토기반 분리막의 곡강도에 미치는 영향)

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.380-385
    • /
    • 2014
  • Clay-based membranes with submicron pore size were successfully prepared by a simple pressing process using low-cost starting materials(e.g., kaolin (K), bentonite (B), talc (T), and sodium borate). The green bodies were sintered at $1000^{\circ}C$ for 2 h in air. The effect of clay-mineral composition on the flexural strength of clay-based membranes was investigated. The porosity of the clay-based membranes could be controlled within the range of 34 - 42% by adjusting the starting composition. The flexural strength of the low-cost membranes depended on both the porosity and the ${\alpha}$-quartz content. In turn, the porosity and ${\alpha}$-quartz content were affected by the (B+T) /(K+B+T) ratio. The plot of strength relative to this ratio, showed a maximum when the ratio was 0.4. The typical flexural strength of these clay-based membranes (with ratio 0.4) was 28 MPa at 34% porosity.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity (Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향)

  • Tsuji, Takeshi;Iturrino, Gerardo J.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2008
  • To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (Si:C Ratio가 다공질 Self-Bonded SiC 세라믹스의 기공율과 곡강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.285-289
    • /
    • 2008
  • Porous self-bonded silicon carbide (SiC) ceramics were fabricated at temperatures ranging from 1750 to $1850^{\circ}C$ using SiC, silicon (Si), and carbon (C) powders as starting materials. The effect of the Si:C ratio on porosity and strength was investigated as a function of sintering temperature. It was possible to produce self-bonded SiC ceramics with porosities ranging from 36% to 43%. The porous ceramics showed a maximal porosity when the Si:C ratio was 2:1 regardless of the sintering temperature. In contrast, the maximum strength was obtained when the ratio was 5:1.

Effect of porosity distribution rate for bending analysis of imperfect FGM plates resting on Winkler-Pasternak foundations under various boundary conditions

  • Aicha, Kablia;Rabia, Benferhat;Daouadji, Tahar Hassaine;Bouzidene, Ahmed
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.575-597
    • /
    • 2020
  • Equilibrium equations of a porous FG plate resting on Winkler-Pasternak foundations with various boundary conditions are derived using a new refined shear deformation theory. Different types of porosity distribution rate are considered. Governing equations are obtained including the plate-foundation interaction. This new model meets the nullity of the transverse shear stress at the upper and lower surfaces of the plate. The novel rule of mixture is proposed to describe and approximate material properties of the FG plates with different distribution case of porosity. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature. Effects of variation of porosity distribution rate, boundary conditions, foundation parameter, power law index, plate aspect ratio, side-to-thickness ratio on the deflections and stresses are all discussed.