DOI QR코드

DOI QR Code

Porosity Prediction of the Coating Layer Based on Process Conditions of HVOF Thermal Spray Coating

HVOF 용사 코팅 공정 조건에 따른 코팅층의 기공도 예측

  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Jong Jae (Research center, Hankook Coating Co., LTD.) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 전준협 (전북대학교 신소재공학부) ;
  • 서남혁 (전북대학교 신소재공학부) ;
  • 이종재 (한국코팅 기술연구소) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Received : 2021.11.30
  • Accepted : 2021.12.24
  • Published : 2021.12.28

Abstract

The effect of the process conditions of high-velocity oxygen fuel (HVOF) thermal spray coating on the porosity of the coating layer is investigated. HVOF coating layers are formed by depositing amorphous FeMoCrBC powder. Oxygen pressure varies from 126 to 146 psi and kerosene pressure from 110 to 130 psi. The Microstructural analysis confirms its porosity. Data analysis is performed using experimental data. The oxygen pressure-kerosene pressure ratio is found to be a key contributor to the porosity. An empirical model is proposed using linear regression analysis. The proposed model is then validated using additional test data. We confirm that the oxygen pressure-kerosene pressure ratio exponentially increases porosity. We present a porosity prediction model relationship for the oxygen pressure-kerosene pressure ratio.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (P006837). This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.

References

  1. M. Oksa, J. Metsajoki and J. Karki: J. Therm. Spray Technol., 24 (2015) 205.
  2. B. Wahlund, J. Yan and M. Westermark: Biomass Bioenergy, 26 (2004) 531. https://doi.org/10.1016/j.biombioe.2003.09.003
  3. N. A. S. Amin and A. Talebian-Kiakalaieh: Waste Manage., 73 (2018) 256. https://doi.org/10.1016/j.wasman.2017.11.019
  4. J. Jeon, N. Seo, H.-J. Kim, M.-H. Lee, H.-K. Lim, S. B. Son and S.-J. Lee: Metals, 11 (2021) 729. https://doi.org/10.3390/met11050729
  5. C. Suryanarayana and A. Inoue: Int. Mater. Reviews, 58 (2013) 131. https://doi.org/10.1179/1743280412Y.0000000007
  6. S. Lee and C. Lee: J. KWS, 21 (2003) 20.
  7. S.-Y. Kim, A.-Y. Lee, E.-J. Cha, D.-H. Kwon, S.-U. Hong, M.-W. Lee, H.-J. Kim and M.-H. Lee: J. Korean Powder Metall. Inst., 25 (2018) 246. https://doi.org/10.4150/KPMI.2018.25.3.246
  8. B. H. Kear, G. Skandan and R. K. Sadangi: Scripta Mater., 44 (2001) 1703. https://doi.org/10.1016/S1359-6462(01)00867-3
  9. L. Zhao, M. Maurer, F. Fisc her, R. Dic ks and E. Lugscheider: Wear, 257 (2004) 41. https://doi.org/10.1016/j.wear.2003.07.002
  10. Y.-J. Kang, G.-S. Ham, H.-J. Kim, S.-H. Yoon and K.-A. Lee: J. Korean Powder Metall. Inst., 25 (2018) 408. https://doi.org/10.4150/KPMI.2018.25.5.408
  11. B.-H. Kim and D.-S. Suhr: J. KWS, 15 (1997) 126.
  12. B.-H. Kim and D.-S. Suhr: J. KWS, 15 (1997) 125.
  13. T. S. Sidhu, S. Prakach and R. D. Agrawal: Mar. Technol. Soc. J., 39 (2005) 53. https://doi.org/10.4031/002533205787443908
  14. L. Gil and M. H. Staia: Thin Solid Films, 420-421 (2002) 446. https://doi.org/10.1016/S0040-6090(02)00815-5
  15. T. Y. Cho, J. H. Yoon, S. H. Yoon, Y. K. Joo, W. H. Choi and Y. B. Son: Korean J. Met. Mater., 55 (2017) 227. https://doi.org/10.3365/kjmm.2017.55.4.227