• Title/Summary/Keyword: pore-water

Search Result 1,903, Processing Time 0.03 seconds

An Experimental Study on the Durability Characterization using Porosity (시멘트 모르타르의 공극률과 내구특성과의 관계에 대한 실험적 연구)

  • Park, Sang Soon;Kwon, Seung-Jun;Kim, Tae Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.171-179
    • /
    • 2009
  • The porosity in porous media like concrete can be considered as a durability index since it may be a routine for the intrusion of harmful ions and room for the keeping moisture. Recently, modeling and analysis techniques for deterioration are provided based on the pore structure with the significance of durability and the relationship between porosity and durability characteristics is an important issue. In this paper, a series of mortar samples with five water to cement ratios are prepared and tests for durability performance are carried out including porosity measurement. The durability test covers those for compressive strength, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient. They are compared with water to cement ratios and porosity. From the normalized data, when porosity increases to 1.45 times, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient decrease to 2.3 times, 2.1 times, 5.5 times and 3.7 times, respectively, while compressive strength decreases to 0.6 times. It was evaluated that these are linearly changed with porosity showing high corelation factors. Additionally, intended durability performances are established from the test results and literature studies and a porosity for durable concrete is proposed based on them.

Evaluation of Low-temperature Compaction Characteristics According to Organic Matter Content through Laboratory Compaction Tests (실내 다짐시험을 통한 유기물 함량에 따른 저온 다짐 특성 분석)

  • Choi, Hyun-Jun;Kim, Sewon;Lee, Seungjoo;Park, Hyeontae;Choi, Hangseok;Kim, YoungSeok
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.93-100
    • /
    • 2024
  • Pore water freezes in low-temperature compaction, which leads to different compaction characteristics compared to room temperature conditions. In regions like Alberta, Canada, where organic soils are prevalent, compaction performance is influenced by the high water retention and compressibility of organic soils, as well as their sensitivity to freezing and thawing. Alberta's strict environmental regulations demand the reuse of excavated soil for backfill, and the long winter season creates challenging conditions for civil engineering projects. In this study, a laboratory compaction test was conducted to evaluate the low-temperature compaction characteristics of organic soils with varying organic content. The results indicate that the optimum moisture content increases as the organic content increases, and the maximum dry unit weight decreases by up to 21.9%. In addition, under temperature conditions below -4℃, no optimum moisture content was observed, and the dry unit weight decreased as the moisture content increased.

Photosynthetic Characteristics of Benthic Microalgae Measured by HPLC and Diving Pulse Amplitude Modulated (PAM) Fluorometry on the Nakdong River Estuary of the Korean Peninsula (HPLC 및 Diving-PAM을 이용한 낙동강 하구 저서미세조류의 광합성 특성)

  • Jeong Bae Kim;Mi Hee Chung;Jung-Im Park
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.61-74
    • /
    • 2024
  • Daemadeung, located in the estuary of the Nakdong River, is formed by sand dunes and possesses well-developed intertidal flats. This study aimed to investigate the habitat of benthic microalgae, photosynthetic pigments, and photosynthetic efficiency in the intertidal flats of Daemadeung from January to December 2011. The inorganic nitrogen content in the sediment pore water was primarily composed of ammonium, while nitrate + nitrite was dominant in the upper layer water. The concentration of chlorophyll a and fucoxanthin in the sediment surface was significantly higher than the mean of all the sediment layer. The average Fv/Fm of benthic microalgae during the entire survey period was 0.52±0.03, with the highest value (0.61±0.08) observed in February. The rETRmax showed a seasonal trend, being high from spring to early autumn (April to October) and low from winter to early spring (January to March, November, December), with the highest value (153.05±2.30 µmol electrons m-2 s-1) in July and the lowest (38.49±5.17 µmol electrons m-2 s-1) in January. The average Fv/Fm of diurnal microalgae was 0.48±0.03, with the highest value (0.61±0.08) observed at noon. The rETRmax showed a highest peak at noon (54.24±11.35 µmol electrons m-2 s-1) and reached its lowest point at 16:00 (26.17±4.75 µmol electrons m-2 s-1). These findings suggest that the productivity of benthic microalgae varies significantly depending on the survey time and sediment depth. Therefore, to quantify the productivity of benthic microalgae using Diving-PAM, surveys should be conducted based on tidal conditions, and simultaneous pigment analysis of sediment layers should also be performed.

Comparison of physical properties and air permeability in the sawdust during wetting and drying procedure (습윤 및 건조과정에서의 톱밥내 물리적 성상과 공기투과성의 변화)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.103-111
    • /
    • 2009
  • Moisture is one of the important design factors that affects to the changes of physical properties and air permeability in the composting matrix. This study examines the effects of moisture during the wetting and drying procedure on physical properties like bulk density, particle size, free air space and air permeability in the sawdust used as the bulking agent in composting process. During both procedures of wetting and drying of the water, with increasing moisture content, bulk density and particle size increased, but FAS decreased. In the range of near 40 to 60% moisture content on a wet basis, particle size and FAS in wetting procedure were larger and higher than those in drying procedure. During wetting procedure, pressure drop continuously decreased ranging from near 20 to 60% moisture content, despite of decreasing FAS as a consequence of increasing moisture, and then over the range of 60% moisture content, pressure drop rapidly increased to the saturated moisture condition while the pore space was filled with the water. On the other hand, during drying procedure, pressure drop decreased from the saturated condition to 40% moisture content. In the recommended range of 50 to 60% moisture content for composting operation, pressure drop in wetting procedure were lower than in drying procedure. For the enhancement of the air permeability in the composting matrix, the wetting procedure was proper than the drying procedure, and the optimum moisture content for the efficient composting operation was appeared to be near 60%.

Cyanobacterial Development and Succession and Affecting Factors in a Eutrophic Reservoir (부영양 저수지에서 남조류의 발달과 천이 및 영향 요인)

  • Kim, Ho-Sub;Hwang, Soon-Jin;Kong, Dong-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • This study was conducted to evaluate the causes and effects of cyanobacterial development and succession in a shallow eutrophic reservoir from March 2003 to February 2004. Phytoplankton succession, sedimentation rate, and sediment composition were analyzed. Algal bioassay also was conducted with the consideration of light, water temperature and nutrients. Cyanobacteria dominated throughout the year, except for spring season (March${\sim}$April) in which diatoms and flagellates dominated. Total cell density increased in July and November when P loading through inflows was high. Oscillatoria spp. and Aphanizomenon sp. were dominant in May and June, respectively, but replaced with Microcystis spp. in July. Thereafter, Microcystis spp. sustained until December, and again shifted to Oscillatoria spp. and Aphanizomenon sp. The dominance of Oscillatoria spp. in May was accompanied with high TN/TP ratio and the increase of water temperature and light intensity. While the dominance of Microcystis spp. was related with relatively low TN/TP ratio, ranging from 46 to 13 (average: 27). The sedimentation rate was highest in March (0.6 m $day^{-1}$) when diatoms dominated. During the period of cyanobacterial dominance, relatively high sedimentation rate was observed in May (0.4 m $day^{-1}$) and October (0.36m $day^{-1}$). C/N ratio of the sediment ranged $6{\sim}8$. Inorganic P concentration in the pore water was low when DO concentration was < 2 mg $O_2$ $L^{-1}$ in the hypolimnion, reflecting the P release from the sediment. Cyanobacterial growth rate depended on phosphorus concentration and water temperature, and high P concentration compensated for the low temperature in the growth rate. Our results suggest that the potential of cyanobacterial development and substantiality in eutrophic reservoirs be high throughout the year, as being supplied with enough P, and emphasize the consideration of sediment man. agement for the water quality improvement and algal bloom control.

Adsorption Properties of the Lysozyme and Albumin with Physicochemical Properties of the Contact Lens (콘택트렌즈의 물리화학적 특성에 따른 라이소자임과 알부민의 흡착 특성)

  • Sung, Yu-Jin;Ryu, Geun-Chang;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.261-270
    • /
    • 2013
  • Purpose: Adsorption properties of lysozyme and albumin according to physiochemical properties of commercial contact lens classified with the FDA categories and a contact lens fabricated in the laboratory were investigated. Methods: The contact lens were prepared using HEMA(2-hydroxyethyl methacrylate) and TRIM(3-(trimethoxysilyl) propyl methacrylate) in a cast mold. Artificial tears containing lysozyme and albumin were prepared. We measured the amounts of protein adsorbed on the each lenses with varying adsorbed time (48 hour) and the pH range (6, 6.8, 7.4, 8.2, 9) of artificial tear. Amount of the proteins absorbed on the contact lenses were measured by using HPLC. Results: Time to reach the equilibrium of protein adsorption for silicone hydrogel lens was taken longer than hydrogel lens. The amount of adsorbed both lysozyme and albumin at equilibrium were greater for the hydrogel lens than the silicone hydrogel lens, and larger for the ionic lens than the non-ionic lens. Lysozyme was more adsorbed on the higher water content of contact lens, whereas albumin was more adsorbed on the lower water content of contact lens. Only lysozyme was adsorbed on the Group IV hydrogel lens of ionic higher water content. The adsorption of protein on contact lens increased with pH of artificial tears as close to the isoelectric point of each protein. Conclusions: The adsorption amount of lysozyme is more affected by the ionic strength of the contact lens surface than the water content of contact lens. Albumin adsorption is more affected by water content than the ionic strength of the contact lens surface. For the adsorption of proteins on the silicone hydrogel lens, the pore size, determined both by the number of Si atoms and the chemical structure of the silicone-containing monomers, as well as the polarity of contact lens should be also considered.

Evaluation of the Sealing Capacity of the Supercritical CO2 by the Measurement of Its Injection Pressure into the Tuff and the Mudstone in the Janggi Basin (초임계이산화탄소(scCO2) 주입압력 측정에 의한 장기분지 응회암과 이암의 scCO2 차폐능 평가)

  • An, Jeongpil;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.303-311
    • /
    • 2017
  • The laboratory scale experiment was performed to evaluate the sealing capacity of the capping rock such as tuff and mudstone, measuring the intial supercritical $CO_2$ ($scCO_2$) injection pressure and the $scCO_2$-water-rock reaction for 90 days. The drilling cores sampled from 800 m in depth around the Janggi basin, Korea were used for the experiment. The mineralogical changes of mudstone and tuff were measured to evaluate the geochemical stability during the $scCO_2$-water-rock reaction at $CO_2$ storage condition (100 bar and $50^{\circ}C$). The rock core was fixed in the high pressurized stainless steel cell and was saturated with distilled water at 100 bar of pore water pressure. The effluent of the cell was connected to the large tank filled with 3 L of water and 2 L of $scCO_2$ at 100 bar, simulating the subsurface injection condition. The $scCO_2$ injection pressure, which was higher than 100 bar, was controlled at the influent port of the cell until the $scCO_2$ begin to penetrate into the rock and the initial injection pressure (> 100 bar) of $scCO_2$ into the rock was measured for each rock. The mineralogical compositions of mudstones after 90 days reaction were similar to those before the reaction, suggesting that the mudstone in the Janggi basin has remained relatively stable for the $scCO_2$ involved geochemical reaction. The initial $scCO_2$ injection pressure (${\Delta}P$) of a tuff in the Janggi basin was 15 bar and the continuous $scCO_2$ injection into the tuff core occurred at higher than 20 bar of injection pressure. For the mudstone in the Janggi basin, the initial $scCO_2$ injection pressure was higher than 150 bar (10 times higher than that of the tuff). From the results, the mudstone in Janggi basin was more suitable than the tuff to shield the $scCO_2$ leakage from the reservoir rock at subsurface.

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea (장기분지 데사이트질 응회암의 불석화작용)

  • Kim, Jinju;Jeong, Jong Ok;Shinn, Young-Jae;Sohn, Young Kwan
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

Study of Surfactant Enhanced Remediation Methods for Organic Pollutant(NAPL) Distributed over the Heterogeneous Medium (계면활성제를 이용한 불균질 매질에서 유기오염물(NAPL)의 정화효율에 관한 실험)

  • 서형기;이민희;정상용
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.51-59
    • /
    • 2001
  • Column and box tests were performed to investigate the removal efficiency of NAPL using the surfactant enhanced flushing In heterogeneous medium. Homogeneous Ottawa sand and heterogeneous soil were used to verify the increase of remediation efficiency for the surfactant enhanced flushing in column test. Box tests with two different heterogeneous sub-structure were performed to quantify the capability of the surfactant enhanced flushing as a remediation method to remove NAPL from the heterogeneous medium. Two different grain size sand layers were repeated in the box to simulate the heterogeneous layer formation and the modified fault structure was built to simulate the fault system in the box. O-xylene as a LNAPL and PCE as a DNAPL were used and oleamide as a non-ionic surfactant. The maximum NAPL effluent concentration with 1% oleamide flushing in the homogeneous column test increased about 460 times compared to that with only water flushing and about 250 times increased in the real soil column test. In heterogeneous medium, the maximum effluent concentration increased about 150 times in 1% oleamide flushing and most of NAPL were removed from the box within 8 pore volume flushing, suggesting that the removal efficiency increased very much compared to in only water flushing. Results investigated the capability of the surfactant enhanced remediation method to remove NAPL even in heterogeneous medium.

  • PDF

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.