• Title/Summary/Keyword: pore network

Search Result 102, Processing Time 0.028 seconds

Effect of raw materials of the papermaking and physical treatment on the pore structure and properties of the paper (주요제지원료의 특성 및 고해가 종이의 pore structure 및 물성에 미치는 영향)

  • Nam, Ki-Young;Chung, Soon-Ki;Won, Jong-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.127-134
    • /
    • 2007
  • Paper is composed network of fibers. Since paper is plain, most cases paper is considered two-dimensional. But network of fibers creates a network of pores, and pores between fibers are most important part of the paper structure. So we have to make an approach to the paper by three-dimensionally. Pore structure in the Z-direction of the paper can affect directly not only basic properties od the paper such as density, porosity, opacity and strength but also coverage of the coating colors during coatong and printing properties. We studied effect of raw materials of the papermaking and physical treatment on the pore structure and properties of the paper.

  • PDF

Prediction of Soil-Water Characteristic Curve and Relative Permeability of Jumunjin Sand Using Pore Network Model (공극 네트워크 모델을 이용한 주문진표준사의 함수특성곡선 및 상대투수율 예측에 관한 연구)

  • Suh, Hyoung Suk;Yun, Tae Sup;Kim, Kwang Yeom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • This study presents the numerical results of soil-water characteristic curve for sandy soil by pore network model. The Jumunjin sand is subjected to the high resolution 3D X-ray computed tomographic imaging and its pore structure is constructed by the web of pore body and pore channel. The channel radius, essential to the computation of capillary pressure, is obtained based on the skeletonization and Euclidean Distance transform. The experimentally obtained soil-water characteristic curve corroborates the numerically estimated one. The pore channel radius defined by minimum radii of pore throat results in the slightly overestimation of air entry value, while the overall evolution of capillary pressure resides in the acceptable range. The relative permeability computed by a series of suggested models runs above that obtained by pore network model at high degree of saturation.

Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs (고분자 연료전지의 다공성층 내에서의 액상수분 이동에 관한 공극-네트워크 해석 연구)

  • Kang, Jung-Ho;Lee, Sang-Gun;Nam, Jin-Hyun;Kim, Charn-Jung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.46-53
    • /
    • 2011
  • Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

  • PDF

A Study on the Transient State of Deep Bed Filtration by the Network Model (Network 모델을 이용한 입상여과공정의 전이상태 해석에 대한 연구)

  • Choo, Changupp
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • Collection efficiencies and pressure drops for the removal of small particles from dilute liquid suspensions by granular bed filter were calculated using network model. The network model is composed of a number of nodes connected with cylindrical bond and particles are deposited on the bond surface. The collection efficiency of each cylindrical bond was predicted using unit cell model corresponding to the pore volume of cylindrical pore both at the initial and transient states. Deposited particles on the collector surface may act as additional collector and reduce the pore size of the collector. As a result, the collection efficiency was improved and pressure drop increased with deposition. Even though the stochastic nature of network requires a large number of simulation work, the model proposed in this study can be used in investigating collection efficiency and pressure drop.

  • PDF

The Effect of Chemical Vapor Infiltrated SiC Whiskers on the Change in the Pore Structure of a Porous SiC Body

  • Joo, Byoung-In;Park, Won-Soon;Choi, Doo-Jin;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.199-202
    • /
    • 2006
  • In this study, SiC whiskers were grown on a porous SiC diesel particulate filter for nanoparticle filtering. To grow the whiskers at the inner pore without closing the pores, we used chemical vapor infiltration with a solution source and a dilute. As the deposition time increased, the whiskers grew and formed a network structure. After 180 min of deposition, the mean diameter of the whiskers was 174 nm and the compressive strength was 58.4 MPa. The pores shrank from $10{\mu}m\;to\;0.4{\mu}m$ and, because the whiskers filed the inner pores, the gradient of permeability decreased as the deposition time increased. However, by using the network structure of whiskers deposited for 120 min and 180 min, we obtained a diesel particulate filter with pores of $0.98{\mu}m\;and\;0.4{\mu}m$, respectively. Furthermore, the filter shows better permeability than a porous body with pores of $1{\mu}m$. In short, by filtering the nanoparticulate materials, the network structure of whiskers improves the strength, reduces the pore size and minimizes the permeability drop.

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.

Preparation of Silicone Rubber Membrane and its Porosity (Silicone Rubber Membrane의 제조 및 기공특성)

  • Lee, Seung-Bum;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.185-194
    • /
    • 1995
  • Membrane process has been employed to separate a specific substance from gas or liquid mixture, and treat wastewater. This is due to the fact that the substance of mixture can be permeated and separated selectively by membrane. Since Initial equipment and operation costs are not expensive, membrane process has been adopted in various fields such as petroleum Industry, chemistry, polymer, electronics, foods, biochemical industry and wastewater treatment. In this study, $CaCO_3$ particles impregnated in silicone rubber network were extracted by using supercritical carbon dioxide and pore distribution of silicone $rubber-CaCO_3$ was investigated with varying amount of extract. Silicone rubber has excellent mechanical properties such as heat-resistance, cold-resistance etc. and $CaCO_3$ has microporous structure. It is possible to make silicone $rubber-CaCO_3$ composite sheets via work-intensive kneading processes. In so doing $CaCO_3$ particles become distributed and impregnated in silicone rubber network. Supercritical carbon dioxide diffuse through composite sample, then sample is swollen. $CaCO_3$ in silicone rubber network Is dissolved in supercritical carbon dioxide, and its sites become pores. Pore distribution, pore shape and surface area are observed by SEM(scanning electron microscope) micrograph and BET surface area analyzer examination respectively. Pore characteristics of membrane suggest the possibilities that the membrane can be used for process of mixture separation and wastewater treatment.

  • PDF

Fabrication of Porous Ceramics and Multi-layered Ceramics Containing Porous Layers; I. Pore Structure (다공성 세라믹스와 다공질층을 포함하는 적층체의 제조에 관한 연구;I. 기공구조)

  • 이해원;윤복규;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1044-1052
    • /
    • 1994
  • Tape casting technique was successfully applied to produce porous ceramics and multi-layered ceramics containing porous layers, where spherical hollow polymer particles were introduced as pore precursors. In the presence of extreme differences in density and size between Al2O3 and pore precursor particles, hindered settling was effective in preventing segregation of component particles and packing behavior of mixed powders was improved through bimodal packing. There were two transitions in packing behavior of mixed powders. The first transition took place at 40~50 vol% pore precursor addition, where majority of pores changed from close to open pore state. The other transition occured at 60~70 vol% pore precursor addition, where pore precursor particles formed a continuous network structure.

  • PDF

Three Dimensional Measurements of Pore Morphological and Hydraulic Properties (토양 공극 형태와 수문학적 특성에 대한 3 차원적 측정)

  • Chun, Hyen-Chung;Gimenez, Daniel;Yoon, Sung-Won;Heck, Richard;Elliot, Tom;Ziska, Laise;Geaorge, Kate;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.415-423
    • /
    • 2010
  • Pore network models are useful tools to investigate soil pore geometry. These models provide quantitative information of pore geometry from 3D images. This study presents a pore network model to quantify pore structure and hydraulic characteristics. The objectives of this work were to apply the pore network model to characterize pore structure from large images to quantify pore structure, calculate water retention and hydraulic conductivity properties from a three dimensional soil image, and to combine measured hydraulic properties from experiments with calculated hydraulic properties from image. Soil samples were taken from a site located at the Baltimore science center, which is located inside of the city. Undisturbed columns were taken from the site and scanned with a computer tomographer at resolutions of 22 ${\mu}m$. Pore networks were extracted by medial-axis transformation and were used to measure pore geometry from one of the scanned samples. Water retention and unsaturated hydraulic conductivity values were calculated from the soil image. Properties of soil bulk density, water retention and unsaturated hydraulic conductivity were measured from three replicates of scanned soil samples. 3D image analysis provided accurate detailed pore properties such as individual pore volumes, pore length, and tortuosity of all pores. These data made possible to calculate accurate estimations of water retention and hydraulic conductivity. Combination of the calculated and measured hydraulic properties gave more accurate information on pore sizes over wider range than measured or calculated data alone. We could conclude that the hydraulic property computed from soil images and laboratory measurements can describe a full structure of intra- and inter-aggregate pores in soil.

A Prediction System of Skin Pore Labeling Using CNN and Image Processing (합성곱 신경망 및 영상처리 기법을 활용한 피부 모공 등급 예측 시스템)

  • Tae-Hee, Lee;Woo-Sung, Hwang;Myung-Ryul, Choi
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.647-652
    • /
    • 2022
  • In this paper, we propose a prediction system for skin pore labeling based on a CNN(Convolution Neural Network) model, where a data set is constructed by processing skin images taken by users, and a pore feature image is generated by the proposed image processing algorithm. The skin image data set was labeled for pore characteristics based on the visual classification criteria of skin beauty experts. The proposed image processing algorithm was applied to generate pore feature images from skin images and to train a CNN model that predicts pore feature ratings. The prediction results with pore features by the proposed CNN model is similar to experts visual classification results, where less learning time and higher prediction results were obtained than the results by the comparison model (Resnet-50). In this paper, we describe the proposed image processing algorithm and CNN model, the results of the prediction system and future research plans.