Three Dimensional Measurements of Pore Morphological and Hydraulic Properties

토양 공극 형태와 수문학적 특성에 대한 3 차원적 측정

  • Chun, Hyen-Chung (National Academy of Agricultural Science, Rural Development Administration) ;
  • Gimenez, Daniel (Department of Environmental Sciences, Rutgers, The State University of New Jersey) ;
  • Yoon, Sung-Won (National Institute for Agronomic Research) ;
  • Heck, Richard (Department of Land Resource Science, Ontario Agricultural College, University of Guelph) ;
  • Elliot, Tom (Department of Land Resource Science, Ontario Agricultural College, University of Guelph) ;
  • Ziska, Laise (Agricultural Research Services) ;
  • Geaorge, Kate (Agricultural Research Services) ;
  • Sonn, Yeon-Kyu (National Academy of Agricultural Science, Rural Development Administration) ;
  • Ha, Sang-Keun (National Academy of Agricultural Science, Rural Development Administration)
  • 전현정 (농촌진흥청, 국립농업과학원 농업환경부) ;
  • ;
  • 윤성원 (프랑스 국립 농업 연구원) ;
  • ;
  • ;
  • ;
  • ;
  • 손연규 (농촌진흥청, 국립농업과학원 농업환경부) ;
  • 하상건 (농촌진흥청, 국립농업과학원 농업환경부)
  • Received : 2010.08.08
  • Accepted : 2010.08.11
  • Published : 2010.08.31

Abstract

Pore network models are useful tools to investigate soil pore geometry. These models provide quantitative information of pore geometry from 3D images. This study presents a pore network model to quantify pore structure and hydraulic characteristics. The objectives of this work were to apply the pore network model to characterize pore structure from large images to quantify pore structure, calculate water retention and hydraulic conductivity properties from a three dimensional soil image, and to combine measured hydraulic properties from experiments with calculated hydraulic properties from image. Soil samples were taken from a site located at the Baltimore science center, which is located inside of the city. Undisturbed columns were taken from the site and scanned with a computer tomographer at resolutions of 22 ${\mu}m$. Pore networks were extracted by medial-axis transformation and were used to measure pore geometry from one of the scanned samples. Water retention and unsaturated hydraulic conductivity values were calculated from the soil image. Properties of soil bulk density, water retention and unsaturated hydraulic conductivity were measured from three replicates of scanned soil samples. 3D image analysis provided accurate detailed pore properties such as individual pore volumes, pore length, and tortuosity of all pores. These data made possible to calculate accurate estimations of water retention and hydraulic conductivity. Combination of the calculated and measured hydraulic properties gave more accurate information on pore sizes over wider range than measured or calculated data alone. We could conclude that the hydraulic property computed from soil images and laboratory measurements can describe a full structure of intra- and inter-aggregate pores in soil.

포어 네트웍 모델들 (Pore network model)은 토양 공극의 구조를 조사할 때 유용한 도구들이다. 이런 모델들은 삼차원 이미지들에서 공극의 구조와 관련된 양적 정보를 제공한다. 이 연구는 포어 네트웍 모델을 이용하여 공극의 구조와 수리학적 특성들을 양적으로 측정하였다. 연구목표는 큰 크기의 이미지에서 공극의 구조에 관한 양적 정보를얻기 위해 포어 네트웍 모델을 적용하고, 토양수분특성과 수리 전도도를 삼차원 이미지로부터 계산하고 이 값들은 실험을 통해 얻어진 실험값들과 결합하여 토양의 수리적 특성을 분석하는 것이었다. 토양 시료들은 발티모아 도시 중심에 있는발티모어 과학센터에 위치한 실험부지에서 채취되었다. 불교란 원주형 시료들이 채취되었고, 22 ${\mu}m$ 의 해상도로 x선 단층 촬영되었다. 포어 네트웍은 중심축 변형에 의해 공극에서 축출되었고 이를 바탕으로 공극 구조가 계산되었다. 토양수분특성과 불포화 수리 전도도 값들은 토양 이미지에서 계산 되었다. 토양 밀도, 토양수분특성과 불포화 수리 전도도들은 3 토양 시료들로부터 실험을 통해 구하였다. 삼차원 이미지 분석은 토양 공극의 특성들을, 예를 들어 공극 부피, 길이, 굴곡도, 가장 정확히 분석하였다. 이런 정확한 분석은 토양 내 수문학적 정보를 정확히 산출할 수 있게 하였다. 계산된 값과 실험을 통한 실험치의 결합은 공극에 대한 더 광범한 범위를 분석할 수 있게 하였다. 이 연구를 통해 이미지에서 계산되고 측정된 수문학적 자료들은 토양 내대기공과 소기공을 모두 다 설명해 줄 수 있는 방법이라는 것이 밝혀졌다.

Keywords

References

  1. Abenny-Mickson, S., T. Miura, and A. Yomota. 1996. Evaluation of two soil water retention models for the prediction of hydraulic conductivity of Daisen Kuroboku (volcanic ash) soil. Soil Phys. Cond. Plant Growth Jpn. 74:17-27.
  2. Amemiya, M. 1965. The influence of aggregate size on soil moisture Content capillary conductivity relations. Soil Sci. Soc. Am. Proc. 29:744-748. https://doi.org/10.2136/sssaj1965.03615995002900060039x
  3. Balland, V., J.A. P. Pollacco, and P.A. Arp.2008. Modeling soil hydraulic properties for a wide range of soil conditions. Ecol. Model. 219(3-4):301-316.
  4. Bastardie. F.Y., Capowiez, J.R. de Dreuzy, and D. Cluzeau. 2003. X-ray tomographic and hydraulic charactcrization of burrowing by three earthworm species in repacked soil cores. Appl. Soil Ecol. 24(1):3-16. https://doi.org/10.1016/S0929-1393(03)00071-4
  5. Durner, W. 1994. Hydraulic conductivity estimation for soil with heterogeneous pore structure. Water Resour Res. 30:211-33. https://doi.org/10.1029/93WR02676
  6. Durner, W., E. Priesack. H.J. Vogel, and T. Zurmuhl. 1999. Determination of parameters for flexible hydraulic functions by inverse modeling. In: M. Th. van Genuchten, F. J. Leij and L. Wu (eds.) Proc. Int. Workshop, Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. p. 817-830. University of California, Riverside, CA.
  7. Elliot, T. R. and R. J. Heck. 2007 A comparison of optical and X-ray CT technique for void analysis in soil thin section. Geoderma. 141 (1-2):60-70. https://doi.org/10.1016/j.geoderma.2007.05.001
  8. Gimenez. D., E. Perfecl. W.J. Rawls. and Y. Pachepsky. 1997. Fractal models for predicting soil hydraulic properties: a review. Eng Geol. 48 (3-4): 161-183. https://doi.org/10.1016/S0013-7952(97)00038-0
  9. Green R.E. and J.C. Corey. 1971. Calculation of hydraulic conductivity: A further evaluation of some predictive methods. Soil Sci. Soc. Am. Proc. 32(561-565).
  10. Hayashi,Y., K. Ken'ichirou, and T. Mizuyama. 2006. Changes in pore size distribution and hydraulic properties of forest soil resulting from structural dcvelopment. J. Hydrol. 331:85-102. https://doi.org/10.1016/j.jhydrol.2006.05.003
  11. Horn, R. and A.J.M. Smucker. 2005. Structure formation and its consequences for gas and water transport in unsaturated amble and forest soils. Soil Tillage Res. 82:5-14. https://doi.org/10.1016/j.still.2005.01.002
  12. Kutilek, M. 2004. Soil hydraulic properties as related to soil structure. Soil Till. Res. 79: 175-184. https://doi.org/10.1016/j.still.2004.07.006
  13. Leij, F.J., A. Sciortino, and A.W. Warrick. 2006. Infiltration in two parallel soil columns. Woter Resour Res. 42 (12): W12408. https://doi.org/10.1029/2006WR005009
  14. Lindquist, W.B., S.M. Lee, D.A. Coker, K.W. Jones, and P. Spanne. 1996. Medial axis analysis of void Structure in three-dimensional tomographic images of porous media. J. Geophys. Res. 101(B4):8297-8310. https://doi.org/10.1029/95JB03039
  15. Lindquist, W.B. and A. Venkatarangan. 1999. Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth (A) 25:593.
  16. Mualem Y.A. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res. 12:513-22. https://doi.org/10.1029/WR012i003p00513
  17. Pagliai. M., M. Raglione. T. Panini. M.Malclla. and M. Lamarca. 1995. The structure of two alluvial soils in Italy after ten years of conventional and minimum tillage. Soil Till. Res. 34 (4):209-223. https://doi.org/10.1016/0167-1987(95)00471-4
  18. Pagliai M. and Vignozzi N. 2002. The soil pore system as an indicator of soil quality. Advances in Geoecology, 35.
  19. Peth, S., R. Horrn, F. Beckmann. T. Donath, J. Fischer. and A.J.M. Smucker. 2008. Three. dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation based microtomography. Soil Sci. Soc. Am. J. 72(4):897-907. https://doi.org/10.2136/sssaj2007.0130
  20. Pires. L.F., J.R. Macedo. M.D. Souza. O.O.S. Bacchi, and K. Reichardt. 2005. Gamma-ray computed tomography to investigate compaction on sewage-sludge-treated soil. Appl. Radiat. Isot. 59(1): 17-25.
  21. Pires, L.F., M. Cooper, F.A .M. Cassaro. K. Reichardt, O.O.S. Bacchi, and N.M.P. Dias. 2008. Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena. 72(2):297-304. https://doi.org/10.1016/j.catena.2007.06.003
  22. Posadas, A.N.D., D. Gimenez, M. Bittelli, C. M. P. Vaz, and M. Flury. 2003. Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65(5):1361-1367.
  23. Radcliffe, D.E. and T.C. Ramussen. 2002, Soil water movement. In: Warrick. A.W. (ed). Soil Physics Companion. CRC Press, Boca Raton, FL.
  24. Sheldrick. B.H. 1984. Analytical Methods Manual. LRRI Contribution No. 84-30. Agriculture Canada, Ottawa, Ontario
  25. Sleutel. S., V. Cnudde, B. Masschaele, J. Vlassenbroek , M. Dierick, L. Van Hoorebeke, P. Jacobs, and S. De Neve. 2008. Comparison of different nano- and micro-focus X-ray computed tomography set-ups for the visualization of the soil microstructure and soil organic matter. Comput. Geosci. 34(8): 931-938. https://doi.org/10.1016/j.cageo.2007.10.006
  26. Spohrer, K., L. Herrmann,J. Ingwersen, and K. Stahr. 2006. Applicability of uni-and bimodal retention functions for water flow modelling in a tropical acrisol. Vadose Zone J. 5: 48-58. https://doi.org/10.2136/vzj2005.0047
  27. Strudley, M.W., T.R. Green. and J.C. Ascough. 2008. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil Till. Res. 99:4-48. https://doi.org/10.1016/j.still.2008.01.007
  28. Tamboli. P.M. W.E. Larson, and M. Amemiya. 1964. Influence of aggregate size on moisture retention. Iowa Acad. Sci. 71: 103-108.
  29. Udawatta, R.P. and S.H. Anderson. 2008. CT-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers. Geoderma. 145(3-4):381-389. https://doi.org/10.1016/j.geoderma.2008.04.004
  30. Ventrella. D., N. Losavio. A.Y. Vonella, and F.J. Leij. 2005. Estimating hydraulic conductivity of a fine-textyred soil using tension infiltrometry. Geoderma. 124(3-4):267-277. https://doi.org/10.1016/j.geoderma.2004.05.005
  31. Vervoort, R.W. and S.R. Cattle. 2003. Linking hydraulic con ductivity and tortuosity parameters to pore space geometry and pore size distribution. J. Hydrol. 272 (1-4):36-49. https://doi.org/10.1016/S0022-1694(02)00253-6
  32. Vogel, H.J. and K. I. Roth. 2001. Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 24(3-4):233-242. https://doi.org/10.1016/S0309-1708(00)00055-5
  33. Wittmuss, H.D. and A.P. Mazurak. 1958. physical and chemical properties of aggregates in a Brunizem soil. Soil Sci. Soc. Am. Proc. 22:1-5. https://doi.org/10.2136/sssaj1958.03615995002200010001x
  34. Wosten, J. H. M. and M.T. van Genuchten. 1988. Using texture and other soil properties to predict the unsaturated soil hydraulic functions. Soil Sci. Soc. Am. J. 52: 1762-1770. https://doi.org/10.2136/sssaj1988.03615995005200060045x
  35. Ziska. L.H., J.A. Bunce, and E.W. Goins. 2004. Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession. Oecologia. 139 (3):454-458. https://doi.org/10.1007/s00442-004-1526-2