• Title/Summary/Keyword: pore formation

Search Result 564, Processing Time 0.02 seconds

Hot Corrosion and Thermally Grown Oxide Formation on the Coating of Used IN738LC Gas Turbine Blade (사용된 IN738LC 가스 터빈 블레이드 코팅층의 고온 부식 및 Thermally Grown Oxide 형성 거동)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun;Choi, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.200-209
    • /
    • 2022
  • In this study, defects generated in the YSZ coating layer of the IN738LC turbine blade are investigated using an optical microscope and SEM/EDS. The blade YSZ coating layer is composed of a Y-Zr component top coat layer and a Co component bond coat layer. A large amount of Cr/Ni component that diffused from the base is also measured in the bond coat. The blade hot corrosion is concentrated on the surface of the concave part, accompanied by separation of the coating layer due to the concentration of combustion gas collisions here. In the top coating layer of the blade, cracks occur in the vertical and horizontal directions, along with pits in the top coating layer. Combustion gas components such as Na and S are contained inside the pits and cracks, so it is considered that the pits/cracks are caused by the corrosion of the combustion gases. Also, a thermally grown oxide (TGO) layer of several ㎛ thick composed of Al oxide is observed between the top coat and the bond coat, and a similar inner TGO with a thickness of several ㎛ is also observed between the bond coat and the matrix. A PFZ (precipitate free zone) deficient in γ' (Ni3Al) forms as a band around the TGO, in which the Al component is integrated. Although TGO can resist high temperature corrosion of the top coat, it should also be considered that if its shape is irregular and contains pore defects, it may degrade the blade high temperature creep properties. Compositional and microstructural analysis results for high-temperature corrosion and TGO defects in the blade coating layer used at high temperatures are expected to be applied to sound YSZ coating and blade design technology.

Low Temperature CO Oxidation over Cu-Mn Mixed Oxides (Cu-Mn 혼합산화물 상에서 일산화탄소의 저온산화반응)

  • Cho, Kyong-Ho;Park, Jung-Hyun;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • The Cu-Mn mixed oxide catalysts with different molar ratios of Cu/(Cu+Mn) prepared by co-precipitation method have been investigated in CO oxidation at $30^{\circ}C$. The catalysts used in this study were characterized by X-ray Diffraction (XRD), $N_2$ sorption, X-ray photoelectron spectroscopy (XPS), and $H_2$-temperature programmed reduction $(H_2-TPR)$ to correlate with catalytic activities in CO oxidation. The $N_2$ adsorption-desorption isotherms of Cu-Mn mixed oxide catalysts showed a type 4 having pore range of 7-20 nm and BET surface area was increased from 17 to $205\;m^2{\cdot}g^{-1}$ with increasing of Mn content. The XPS analysis showed the surface oxidation state of Cu and Mn represented $Cu^{2+}$and the mixture of $Mn^{3+}$ and $Mn^{4+}$, respectively. Among the catalysts studied here, Cu/(Cu+Mn) = 0.5 catalyst showed the highest activity at $30^{\circ}C$ in CO oxidation and the catalytic activity showed a typical volcano-shape curve with respect to Cu/(Cu+Mn) molar ratios. The water vapor showed a prohibiting effect on the efficiency of the catalyst which is due to the competitive adsorption of carbon monoxide on the active sites of catalyst surface and finally the formation of hydroxyl group with active metals.

Basic Characteristics of ALC using Carbon dioxide Conversion Capture Materials (이산화탄소전환탄산화물 혼합 경량기포 콘크리트의 기초 특성)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum;Kuem-Dan Park;Young-Gon Kim;Eun-Sung Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.121-127
    • /
    • 2024
  • In this study, the applicability of replacing DG(Desulfurized Gypsum) from oil refinery with CCCMs(Carbon dioxide Conversion Capture Materials) as an ALC(Auto-claved LIghtweight Concrete) raw material was examined, and basic properties of ALC was measured. The main chemical components of DG and CCCMs were CaO and SO3, and an increase in LOI(Loss of ignition) due to mineral carbonation reaction was verified. The crystalline phases of CCCMs were CaCO3, CaSO4, Ca(OH)2, and CaSO4·2H2O. When DG, a raw material for ALC production, was replaced with CCCMs, foaming height, pore shape, absolute dry gravity, and compressive strength results measured similar for all binders. In addition, the formation of tobermorite which is main crystalline phase of ALC was shown for all specimens in microstructural analysis.

Studies on the Physico-Chemical Characteristics of Different Casing Materials Affecting Mycelial Growth and Yield of Cultivated Mushroom, Agaricus bisporus (Lange) Sing. (양송이의 균사생장(菌絲生長) 및 자실체(子寶體) 수량(收量)에 미치는 복토재료(覆土材料)의 이화학적(理化學的) 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Dong-Soo
    • The Korean Journal of Mycology
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1975
  • Since the importance of casing in fruit body formation of Agaricus bisporus has been emphasized, physico-chemical characteristics of casing materials were discussed by many workers and a mixture of peat and mineral soil as proper casing material has been adopted in many of mushroom growing countries. Because of limited resources of peat in Korea, it is necessary to find practical performance and substitutional materials for casing. The effect of casing on mycelial growth and mushroom yield of A. bisporus varied with materials, its combination and practices etc. The experiments to be discussed in this paper are concerned with pH and Ca of casing material which influence A bisporus, and changes of physico-chemical characteristics with mixing ratio of casing materials and its effect on A. bisporus. The optimum range of moisture content of each material, management of watering and application of physico-chemical characteristics casing materials was also investigated and re-use of weathered spent compost for casing material was described. 1. The effect of calcium on mycelial growth of A. bisporus at various pH in Halbschalentest showed different results with calcium sources. Best results were obtained around neutrality and fresh weight of fruit bodies grown in the range of pH 7 to 8 was highest among the tested levels. 2. Available moisture, pore space, organic matter, cation exchangeable capacity and exchangeable cation was increased by an increase of mixing ratio of peat in casing materials, while an adverse effect was obtained by addition of sand. 3. Mycelial growth on clay loam was more rapid at a lower bulk density of 0.75g/cc and at 20% moisture content on a dry weight basis at the same bulk density. 4. Mixing ratio of casing materials, 60 to 80 per cent by volume of peat mixed with 20 to 40 per cent of clay loam produced the highest yield of fresh fruit bodies and sand the lowest. However, per cent of open cap was highest in peat and lowest in sand. 5. Days required for fruit body initiation was shortened in mixtures of peat and clay loam by one to three days compared with other materials and the formation of flushes was clear. 6. The effect of some physico-chemical characteristics of casing materials on the fresh weight of fruit bodies were estimated by a multiple regression equation; Y=-923.86+$8.18X_1+8.04X_2+7.90X_3+0.12X_4+2.03X_5-0.82X_6-0.54X_7$ where $X_1,X_2,X_3,X_4,X_5,X_6,X_7$ are sand, silt, clay, available moistuer, porosity, organic matter and exchangeable cation respectively. The productivity of certain casing material could be predicted from this equation. 7. Fresh weight of fruit bodies was positively correlated with porosity exchangeable cation, organic matter, available moisture, silt and clay of materials; while sand was negatively correlated. On the contrary, sand was the unique factor reducing per cent of open cap. 8. Distribution of three phases of high productive casing material was concentrated in the range of 10 to 30 per cent solids, 15 to 30 per cent liquids, and 50 to 60 per cent in air volume. 9. Fresh weight of fruit bodies from peat was not affected with heavy watering but in clay loam and sandy loam severe crop losses occurred. Fresh weight of individual fruit was increased and open caps were decreased with heavy watering but light watering resulted in adverse effects: its effect was especially great in peat. 10. Optimum range of moisture content by weight on a dry basis was different with each casing material. To maintain optimum moisture content concerned with yield of fruit bodies and open cap, sandy loam and peat mixtures required daily watering of 0.6, 0.6 to 1. 2 and 1.2 to 2.4 liters per $3.3m^2$ of bed area, respectively. 11. Maximum yield of fruit body was recorded in the range of pF 2. 0 to 2. 5 of casing materials if organic matter content was below 4.2 per cent and in pF 1. 3 to 1.8 if above 7.1%. 12. pF curve of a certain casing material could be draws from moisture content at various pF values by multiple regression equations provided texture, organic matter and calcium of the casing material are given. Optimum moisture range of the casing materials also could be estimated by the equation. 13. It was possible to improve the phyico-chemical characteristics of clay loam and sandy loam by addition of weathered spent compost although the effect was less than in the case of peat. Fresh weight of fruit bodies wsa increased by addition of weathered spent compost but its effect was not as remarkable as peat. Accordingly, further studies will be required.

  • PDF

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Resveratrol Ameliorates NMDA-induced Mitochondrial Injury by Enhanced Expression of Heme Oxygenase-1 in HT-22 Neuronal Cells (NMDA를 처리한 HT-22 신경세포에서 미토콘드리아 손상을 완화하는 레스베라트롤의 보호 효과와 헴 산화효소-1의 역할)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • N-methyl-D-aspartate (NMDA) receptors have received considerable attention regarding their involvement in glutamate-induced neuronal excitotoxicity. Resveratrol has been shown to exhibit neuroprotective effects against this kind of overactivation, but the underlying cellular mechanisms are not yet clearly understood. In this study, HT-22 neuronal cells were treated with NMDA in Mg2+-free buffer and subsequently used as an experimental model of glutamate excitotoxicity to elucidate the mechanisms of resveratrol-induced neuroprotection. We found that NMDA treatment causes a drop in MTT reduction ability, disrupts inside-negative transmembrane potential of mitochondria, depletes cellular ATP levels, and stimulates intracellular ROS production. Double fluorescence imaging studies demonstrated an increased formation of mitochondrial permeability transition (MPT) pores accompanied by apoptotic cell death, while cobalt protoporphyrin and bilirubin showed protective effects against NMDA-induced mitochondrial injury. On the other hand, zinc protoporphyrin IX significantly attenuated the protective effects of resveratrol which was itself shown to enhance heme oxygenase-1 (HO-1) mRNA and protein expression levels. In cells transfected with HO-1 small interfering RNA, resveratrol failed to suppress the NMDA-induced effects on MTT reduction ability and MPT pore formation. The present study suggests that resveratrol may prevent mitochondrial injury in NMDA- treated HT-22 cells and that enhanced expression of HO-1 is involved in the underlying cellular mechanism.

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea (서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상)

  • Sang-Ho Moon;Yoon Yeol Yoon;Jin-Yong Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.671-687
    • /
    • 2022
  • It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

The Effect of SO2 and H2O on the NO Reduction of V2O5-WO3/TiO2/SiC Catalytic Filter (V2O5-WO3/TiO2/SiC 촉매필터의 NO 환원에 SO2와 H2O가 미치는 영향)

  • Ha, Ji-Won;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.688-693
    • /
    • 2014
  • For investigating NO reduction activity of an catalytic filter, the catalytic performance was measured under the presence of $SO_2$ and $H_2O$, respectively or simultaneously in the simulation gas composed of NO, $NH_3$, and air. The catalytic filter was prepared by coating $V_2O_5-WO_3/TiO_2$ catalyst on the pore surface of SiC filter element of which the superior performance for the particulate removal was well known. At the temperature below $260^{\circ}C$, the catalytic activities were enormously decreased under the presence of $SO_2$ and $H_2O$, respectively or simultaneously, compared with those under the cases of the absence of $SO_2$ and $H_2O$. However, the presence of $SO_2$ promoted the performance of the catalytic filter above $320^{\circ}C$ with showing the NO conversion better than 99.8% for the NO inlet concentration of 500 ppm and at the face velocity of 2 cm/s. In particular, the presence of water showed high NO conversion higher than 99% up to high temperature of $380^{\circ}C$. This effect of water was explained by the reason that it retarded the ammonia oxidation which is the main step into the formation of $N_2O$. The initial NO reduction activity of the catalytic filter maintained for the duration of 100 hours in the presence of $SO_2$ and $H_2O$. Therefore, it was concluded that the catalytic filter was promisingly useful for the industrial NOx reduction catalyst in order to treat the particulate and NO simultaneously.

Evaluation of the CO2 Storage Capacity by the Measurement of the scCO2 Displacement Efficiency for the Sandstone and the Conglomerate in Janggi Basin (장기분지 사암과 역암 공극 내 초임계 이산화탄소 대체저장효율 측정에 의한 이산화탄소 저장성능 평가)

  • Kim, Seyoon;Kim, Jungtaek;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.469-477
    • /
    • 2016
  • To evaluate the $CO_2$ storage capacity for the reservoir rock, the laboratory scale technique to measure the amount of $scCO_2$, replacing pore water of the reservior rock after the $CO_2$ injection was developed in this study. Laboratory experiments were performed to measure the $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin, which are classified as available $CO_2$ storage rocks in Korea. The high pressurized stainless steel cell containing two different walls was designed and undisturbed rock cores acquired from the deep drilling site around Janggi basin were used for the experiments. From the lab experiments, the average $scCO_2$ displacement efficiency of the conglomerate and the sandstone in Janggi basin was measured at 31.2% and 14.4%, respectively, which can be used to evaluate the feasibility of the Janggi basin as a $scCO_2$ storage site in Korea. Assuming that the effective radius of the $CO_2$ storage formations is 250 m and the average thickness of the conglomerate and the sandstone formation under 800 m in depth is 50 m each (from data of the drilling profile and the geophysical survey), the $scCO_2$ storage capacity of the reservoir rocks around the probable $scCO_2$ injection site in Janggi basin was calculated at 264,592 metric ton, demonstrating that the conglomerate and the sandstone formations in Janggi basin have a great potential for use as a pilot scale test site for the $CO_2$ storage in Korea.

The Effect of Al2O3 upon Firing Range of Clay-EAF Dust System Body (Clay-EAF Dust계 소지의 소결온도 범위에 미치는 Al2O3의 영향)

  • 김광수;강승구;이기강;김유택;김영진;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.494-500
    • /
    • 2003
  • The effects of $Al_2$O$_3$ addition upon the sintering range of clay-EAF dust (the specified wastes produced from steel making process) system body which would be used as a constructing bricks were investigated. The slope of apparent density to sintering temperature decreased for Clay-dust body containing 5~15 wt% A1203 sintered at 1200-125$0^{\circ}C$, and the absorption(%) of specimen sintered above 125$0^{\circ}C$ decreased due to the formation of open pores produced by pore bloating. For the specimen without any $Al_2$O$_3$ addition sintered at 1275$^{\circ}C$, the major phase was cristobalite, the small amount of mullite (3Al$_2$O$_3$ 2SiO$_2$) formed and the hematite (Fe$_2$O$_3$) remained. In the Clay-dust system body containing $Al_2$O$_3$ 15 wt%, however, the cristobalite disappeared and the major phase was mullite. Also the part of $Al_2$O$_3$ reacted with hematite to form hercynite (FeAl$_2$O$_4$). From the these results, addition of $Al_2$O$_3$ to Clay-dust system body enlarges a sintering range; decreasing an apparent density and absorption slop to sintering temperature owing to consumption of liquid phase SiO$_2$ at higher temperature and gas-forming component Fe$_2$O$_3$ at reduced atmosphere which would decrease an amount of liquid formed and increase the viscosity of the liquid produced during the sintering process.