DOI QR코드

DOI QR Code

Low Temperature CO Oxidation over Cu-Mn Mixed Oxides

Cu-Mn 혼합산화물 상에서 일산화탄소의 저온산화반응

  • Cho, Kyong-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Park, Jung-Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2010.05.27
  • Accepted : 2010.06.21
  • Published : 2010.06.30

Abstract

The Cu-Mn mixed oxide catalysts with different molar ratios of Cu/(Cu+Mn) prepared by co-precipitation method have been investigated in CO oxidation at $30^{\circ}C$. The catalysts used in this study were characterized by X-ray Diffraction (XRD), $N_2$ sorption, X-ray photoelectron spectroscopy (XPS), and $H_2$-temperature programmed reduction $(H_2-TPR)$ to correlate with catalytic activities in CO oxidation. The $N_2$ adsorption-desorption isotherms of Cu-Mn mixed oxide catalysts showed a type 4 having pore range of 7-20 nm and BET surface area was increased from 17 to $205\;m^2{\cdot}g^{-1}$ with increasing of Mn content. The XPS analysis showed the surface oxidation state of Cu and Mn represented $Cu^{2+}$and the mixture of $Mn^{3+}$ and $Mn^{4+}$, respectively. Among the catalysts studied here, Cu/(Cu+Mn) = 0.5 catalyst showed the highest activity at $30^{\circ}C$ in CO oxidation and the catalytic activity showed a typical volcano-shape curve with respect to Cu/(Cu+Mn) molar ratios. The water vapor showed a prohibiting effect on the efficiency of the catalyst which is due to the competitive adsorption of carbon monoxide on the active sites of catalyst surface and finally the formation of hydroxyl group with active metals.

서로 다른 몰비의 Cu-Mn 혼합산화물을 공침법으로 제조하여 $30^{\circ}C$에서 CO 산화반응을 수행하였다. 제조된 촉매는 CO 산화반응에서 반응 활성과 연관시키기 위하여 XRD, $N_2$ 흡착 및 탈착, XPS, $H_2-TPR$ 등의 특성분석을 수행하였다. 제조된 촉매의 질소흡착 등온곡선은 4형태로 7-20 nm크기의 세공이 존재하며, Mn의 함량이 증가함에 따라 BET 표면적은 17에서 $205m^2{\cdot}g^{-1}$ 으로 증가하였다. XPS 분석으로 Cu-Mn 혼합산화물 상의 Cu는 주성분이 2+의 산화상태임을 확인하였고, Mn은 +3과 +4의 산화 상태를 나타냈다. Cu-Mn 촉매의 함량 및 비율에 따른 최적 활성을 실험 조사한 결과, $30^{\circ}C$의 반응온도에서 Cu/(Cu+Mn)의 몰비가 0.5일 때 가장 좋은 활성을 나타냈으며, 이를 기준으로 화산형 형태의 반응 곡선을 나타냈다. 수분 존재하의 CO 산화반응은 활성점에 수분과 CO의 경쟁흡착으로 촉매의 활성을 감소시켰으며 최종적으로는 활성금속 성분과 하이드록실 그룹을 형성하였기 때문이다.

Keywords

References

  1. Xu J., Mullins D. R, and Overbury S.H., "CO Desorption and Oxidation on $CeO_2$-supported Rh: Evidence for Two Types of Rh Sites," J. Catal., 243(1). 158-164 (2006). https://doi.org/10.1016/j.jcat.2006.07.008
  2. Wang F., and Lu G., "High performance Rare Earth Oxides $LnO_x$ (Ln = La, Ce, Nd, Sm and Dy)-Modified Pt/$SiO_2$ Catalysts for CO Oxidation in the Presence of $H_2$," J. Power Sources, 181(1), 120-126 (2008). https://doi.org/10.1016/j.jpowsour.2008.03.040
  3. Xua G., and Zhang Z.-G., "Preferential CO Oxidation on Ru/$Al_2O_3$ Catalyst: An Investigatio.n by Considering the Simultaneously Involved Methanation," J. Power Sources, 157(1), 64-77 (2006). https://doi.org/10.1016/j.jpowsour.2005.07.028
  4. van Giezen J.C., van den Berg F.R., Kleinen J.L., van Dillen A.J., and Geus J.W., "The Effect of Water on the Activity of Supported Palladium Catalysts in the Catalytic Combustion of Methane," Catal. Today, 47(1-4), 287-293 (1999). https://doi.org/10.1016/S0920-5861(98)00309-5
  5. Wang F., and Lu G., "Hydrogen Feed Gas Purification over Bimetallic Cu-Pd Catalysts-Effects of Copper Precursors on CO oxidation," Inter. J. Hydrogen. Energ., 2010, in press.
  6. Haruta M., Yamada N., Kobayashi T., and lijima S., "Gold Catalysts prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide," J. Catal., 115(2), 301-309 (1989). https://doi.org/10.1016/0021-9517(89)90034-1
  7. Hasegawa Y.-I., Maki R.-U., Sano M., and Miyake T., "Preferential Oxidation of CO on Copper-containing Manganese Oxides," Appl. Catal. A: Gen., 371(1-2), 67-72 (2009). https://doi.org/10.1016/j.apcata.2009.09.028
  8. Morales M.R, Barbero. B.P., and Cadus L.E., "Evaluation and Characterization of Mn-Cu Mixed Oxide Catalysts for Ethanol Total Oxidation: Influence of Copper Content," Fuel, 87(7), 1177-1186 (2008). https://doi.org/10.1016/j.fuel.2007.07.015
  9. Mai H., Mengfei L., and Ping F., "Characterization of CuO Species and Thermal Solid-Solid Interaction in CuO/$CeO_2-Al_2O_3 $ Catalyst by In-Situ XRD, Raman Spectroscopy and TPR," J. Rare Earths, 24(2), 188-192 (2006). https://doi.org/10.1016/S1002-0721(06)60091-4
  10. Craciun R., Nentwick B., Hadjiivanov K., and Knozinger H., "Structure and Redox Properties of $MnO_x$/Yttrium-stabilized Zirconia (YSZ) Catalyst and its used in CO and $CH_4$ Oxidation," Appl. Catal. A: Gen., 243(1), 67-79 (2003). https://doi.org/10.1016/S0926-860X(02)00538-0
  11. Xingyi W., Qian K., and Dao L., "Catalytic Combustion of Chlorobenzene over $MnO_x-CeO_2 $mixed Oxide Catalysts," Appl. Catal. B: Environ., 86(3-4), 166-175 (2009). https://doi.org/10.1016/j.apcatb.2008.08.009
  12. Tang X., Li Y., Huang X., Xu Y., Zhu H., Wang J., and Shen W., "$MnO_x-CeO_2 $Mixed Oxide Catalysts for Complete Oxidation of Formaldehyde: Effect of Preparation Method and Calcination Temperature," Appl. Catal. B: Environ., 62(3-4), 265-273 (2006). https://doi.org/10.1016/j.apcatb.2005.08.004
  13. Hutchings G.J., Mirzaei A.A., Joyner R. W., Siddiqui M.R.H., and Taylor S.H., "Effect of Preparation Conditions on the Catalytic Performance of Copper Manganese Oxide Catalysts for CO Oxidation," Appl. Catal. A: Gen., 166(1), 143-152 (1998). https://doi.org/10.1016/S0926-860X(97)00248-2
  14. Lee H.Y., Manivannan, V., and Goodenough, J.B., "Supercapacitor Behavior with KCI Electrolyte," J. Solid State Chem., 144(1), 220-223 (1999). https://doi.org/10.1006/jssc.1998.8128
  15. Lee H.Y., V. Manivannan, and Goodenough, J.B., "Electrochemical Capacitors with KCl Electrolyte," C. R. Acad. Sci. Paris, t. 2, SCrie II c, p. 565-577 (1999).
  16. Hasegawa Y., Fukumoto K., Ishima T., Yamamoto H., Sano M., and Miyake T., "Preparation of Copper-containing Mesoporous Manganese Oxides and their Catalytic Performance for CO Oxidation," Appl. Catal. B: Environ., 89(3-4), 420-424 (2009). https://doi.org/10.1016/j.apcatb.2008.12.023
  17. PaIDey S., Gedevanishvili S., Zhang W., and Rasouli F., "Evaluation of a Spinel Based Pigment System as a CO Oxidation Catalyst," Appl. Catal, B: Environ., 56(3), 241-250 (2005). https://doi.org/10.1016/j.apcatb.2004.09.013
  18. Xu R., Wang X., Wang D., Zhou K., and Li Y., "Surface Structure Effects in Nanocrystal $MnO_2$ and Ag/$MnO_2$ Catalytic Oxidation of CO," J. Catal., 237(2), 426-430 (2006). https://doi.org/10.1016/j.jcat.2005.10.026
  19. Morales M.R., Barbero B.P., and Cadus L.E., "Total Oxidation of Ethanol and Propane over Mn-Cu Mixed Oxide Catalysts," Appl. Calal. B: Environ., 67(3-4), 229-236 (2006). https://doi.org/10.1016/j.apcatb.2006.05.006
  20. Reddy A.S., and Gopinath C.S., C. S., "Selective OrthoMethylation of Phenol with Methanol over Copper Manganese Mixed-Oxide Spinel Catalysts," J. Catal., 243(2), 278-291 (2006). https://doi.org/10.1016/j.jcat.2006.07.014
  21. Tanaka Y. Utaka T., Kikuchi R., Takeguchi T., Sasaki K., and Eguchi K., "Water Gas Shift Reaction for the Reformed Fuels over Cu/MnO Catalysts Prepared via Spinel-type Oxide," J. Catal., 215(2), 271-278 (2003). https://doi.org/10.1016/S0021-9517(03)00024-1
  22. Kramer M., Schmidt T., Stowe K., and Maier W.F., "Structural and Catalytic Aspects of Sol-Gel Derived Copper Manganese Oxides as Low-temperature CO Oxidation Catalyst," Appl. Catal. A: Gen., 302(2), 257-263 (2006). https://doi.org/10.1016/j.apcata.2006.01.018
  23. Fortunato. G., Oswald H. R., and Reller A., "Spinel-type Oxide Catalysts for Low Temperature CO Oxidation Generated by Use of an Ultrasonic Aerosol Pyrolysis Process," J. Mater. Chem., 11(3), 905-911 (2001). https://doi.org/10.1039/b007306g
  24. Hamoudi S., Larachi F., Adnot A., and Sayari A., "Characterization of Spent $MnO_2/CeO_2 $Wet Oixdation Catalyst by TPO-MS, XPS, and S-SIMS," J. Catal. 185(2), 333-344 (1999) . https://doi.org/10.1006/jcat.1999.2519
  25. Zhu J., and Gao Q., "Mesoporous $MCo_2O_4$ (M = Cu, Mn and Ni) Spinels: Structural Replication, Characterization and Catalytic Application in CO Oxidation," Miropor. Mesopor. Mater., 124(1-3), 144-152 (2009). https://doi.org/10.1016/j.micromeso.2009.05.003
  26. Papavasiliou, J., Avgouropoulos, G., and Ioannides, T., "Combined Steam Reforming of Methanol over Cu-Mn Spinel Oxide Catalysts," J. Catal., 251(1), 7-20 (2007). https://doi.org/10.1016/j.jcat.2007.07.025
  27. Wang L.-C., Liu Q., Huang X.-S., Liu Y.-M., Cao Y., and Fan K.-N., "Gold Nanoparticles Supported on Manganese Oxides for Low-temperature CO Oxidation," Appl. Catal. B: Environ., 88(1-2), 204-212 (2009). https://doi.org/10.1016/j.apcatb.2008.09.031
  28. Zhu P., Li J., ZuO S., and Zhou R., "Preferential Oxidation Properties of CO in Excess Hydrogen over CuO-$CeO_2$ Catalyst prepared by Hydrothermal Method," Appl. Sur. Sci., 255(5), 2903-2909 (2009).
  29. Chen. Y.-Z., Liaw, B,-J., and Huang, C.-W., "Selective Oxidation of CO in Excess Hydrogen over $CuO/Ce_xSn_{1-x}O_2$Catalysts," Appl. Catal. A: Gen., 302(2), 168-176 (2006). https://doi.org/10.1016/j.apcata.2005.12.032
  30. Lee, H. C., and Kim, D. H. "Kinetics of CO and $H_2$ Oxidation over CuO-$CeO_2$ Catalyst in $H_2$ Mixtures with $CO_2$ and $H_2O$," Catal. Today, 132(1-4), 109-116 (2008). https://doi.org/10.1016/j.cattod.2007.12.028
  31. Wu, Z., Zhu, H.. Qin, Z.., Wang, H., Ding, J., Huang, L. and Wang, J., "CO Preferential Oxidation in $H_2$-rich Stream over a CuO/$CeO_2$ Catalyst with High $H_2O$ and $CO_2$ tolerance," Fuel. 2010 in press.
  32. Avgouropoulos, G., and Ioannides, T., "Selective CO oxidation over CuO-$CeO_2$" Catalysts prepared via the Urea-Nitate Combustion Method," Appl. Catal. A: Gen., 244(1), 155-167 (2003). https://doi.org/10.1016/S0926-860X(02)00558-6
  33. Park, J. W., Jeong, J. H., Woon, W. L., and Rhee, Y. W., "Selective Oxidation of Carbon Monoxide in Hydrogen-Rich Stream over Cu-Ce/$\gamma$-$Al_2O_3$ Catalysts promoted with Cobalt in a Fuel Processor for Proton Exchange Membrane Fuel Cells," J. Power Sources, 132(1-2), 18-28 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.059