DOI QR코드

DOI QR Code

The Effect of SO2 and H2O on the NO Reduction of V2O5-WO3/TiO2/SiC Catalytic Filter

V2O5-WO3/TiO2/SiC 촉매필터의 NO 환원에 SO2와 H2O가 미치는 영향

  • Ha, Ji-Won (Department of Chemical Engineering/ERI, Gyeongsang National University) ;
  • Choi, Joo-Hong (Department of Chemical Engineering/ERI, Gyeongsang National University)
  • 하지원 (경상대학교 화학공학과/ERI) ;
  • 최주홍 (경상대학교 화학공학과/ERI)
  • Received : 2014.03.26
  • Accepted : 2014.05.22
  • Published : 2014.10.01

Abstract

For investigating NO reduction activity of an catalytic filter, the catalytic performance was measured under the presence of $SO_2$ and $H_2O$, respectively or simultaneously in the simulation gas composed of NO, $NH_3$, and air. The catalytic filter was prepared by coating $V_2O_5-WO_3/TiO_2$ catalyst on the pore surface of SiC filter element of which the superior performance for the particulate removal was well known. At the temperature below $260^{\circ}C$, the catalytic activities were enormously decreased under the presence of $SO_2$ and $H_2O$, respectively or simultaneously, compared with those under the cases of the absence of $SO_2$ and $H_2O$. However, the presence of $SO_2$ promoted the performance of the catalytic filter above $320^{\circ}C$ with showing the NO conversion better than 99.8% for the NO inlet concentration of 500 ppm and at the face velocity of 2 cm/s. In particular, the presence of water showed high NO conversion higher than 99% up to high temperature of $380^{\circ}C$. This effect of water was explained by the reason that it retarded the ammonia oxidation which is the main step into the formation of $N_2O$. The initial NO reduction activity of the catalytic filter maintained for the duration of 100 hours in the presence of $SO_2$ and $H_2O$. Therefore, it was concluded that the catalytic filter was promisingly useful for the industrial NOx reduction catalyst in order to treat the particulate and NO simultaneously.

촉매필터의 NO 환원활성을 조사하기 위하여 $SO_2$$H_2O$가 동시 또는 따로 존재하는 조건에서 NO, $NH_3$, air로 구성된 합성가스 분위기에서 그 성능이 측정되었다. 집진성능이 높이 평가된 SiC 세라믹 필터의 기공에 $V_2O_5-WO_3/TiO_2$ 촉매를 코팅하여 SCR용 촉매필터를 제작하였다. $260^{\circ}C$ 이하의 저온영역에서 반응가스 중에 $SO_2$$H_2O$가 각각 또는 동시에 존재할 경우에 이들이 존재하지 않을 때와 비교하여 촉매필터의 활성이 두드러지게 감소하였다. 반면에 $320^{\circ}C$ 이상의 고온에서는 반응가스 중에 $SO_2$가 포함될 경우 촉매필터의 활성이 증가하여 여과속도 2 cm/s에서 500 ppm의 NO를 99.8% 이상 질소로 환원시켰다. 특히 반응가스 중에 물이 존재할 때는 $380^{\circ}C$의 고온까지 99% 이상의 NO 전환율이 유지되었다. 이와 같은 물의 영향은 물이 고온에서 $NH_3$ 산화반응을 둔화시켜서 $N_2O$ 생성으로 가는 반응을 억제시키기 때문으로 해석되었다. $SO_2$$H_2O$가 공존하는 반응가스에서 100시간 운전 후에도 촉매필터의 초기 NO 환원활성이 유지되었다. 따라서 촉매필터가 분진과 NOx 가스를 동시에 처리할 수 있는 우수한 산업촉매로써 활용될 수 있을 것으로 사료되었다.

Keywords

References

  1. Amiridis, M. D., Wachs, I. E., Jehng, J. M. and Kim, D. S., "Reactivity of $V_2O_5$ Catalysts for the Selective Catalytic Reduction of NO by $NH_3$," J. Catal., 161, 247-253(1996). https://doi.org/10.1006/jcat.1996.0182
  2. Alemany, L. J., Lietti, L., Ferlazzo, N., Forzatti, P., Busca, G., Giamello, E. and Bregani, F., "Reactivity and Physicochemical Characterisation of $V_2O_5$-$WO_3$$TiO_2$ De-$NO_x$ Catalysts," J. Catal., 155, 117-130(1995). https://doi.org/10.1006/jcat.1995.1193
  3. Saracco, G. and Specchia, V., "Catalytically Modified Fly-ash Filter $NO_x$ Reduction with $NH_3$," Chem. Eng. Sci., 51, 5289-5297(1996). https://doi.org/10.1016/S0009-2509(96)00373-9
  4. Choi, J. H., Kim, S. K. and Bak, Y. C., "The Reactivity of $V_2O_5$-$WO_3$$TiO_2$ Catalyst Supported on a Ceramic Filter Candle for Selective Reduction of NO," Korean J. Chem. Eng., 18, 719-724(2001). https://doi.org/10.1007/BF02706392
  5. Choi, J. H., Kim, S. K. Ha, S. J. and Bak, Y. C., "The Preparation of $V_2O_5$/$TiO_2$ Catalyst Supported on the Ceramic Filter Candle for Wdlective Reduction of NO," Korean J. Chem. Eng., 18(4), 456-462(2001). https://doi.org/10.1007/BF02698290
  6. Choi, J. H., Kim, J. H., Bak, Y. C., Amal, R. and Scott, J., "Pt-$V_2O_5$-$WO_3$$TiO_2$ Catalysts Supported on SiC Filter for NO Reduction at Low Temperature," Korean J. Chem. Eng., 22(6), 844-851(2005). https://doi.org/10.1007/BF02705663
  7. Kim, Y. A., Choi, J. H., Scott, J., Chiang, K. and Amal, R., 'Preparation of High Porous Pt-$V_2O_5$-$WO_3$$TiO_2$/SiC Filter Fors Imultaneous Removal of NO and Particultates," Powder Technol., 180, 79-85(2008). https://doi.org/10.1016/j.powtec.2007.03.018
  8. Michael, D. A., Israel, E. W., Dea, G., Jehng, J. M. and Kim, D. S., "Reactivity of $V_2O_5$ Catalysts for the Selective Catalytic Reduction of NO by $NH_3$ : Influence of Vanadia Loading, $H_2O$, and $SO_2$," J. Catal., 161, 247-253(1996). https://doi.org/10.1006/jcat.1996.0182
  9. Odenbrand, C. U. I., Par, L. T., Jan, G., Brandin, G. M. and Andersson, A. H., "Effect of Water Vapor on the Selective in the Reduction of Nitric Oxide with Ammonia over Vanadia Supported on Silica-titania," Appl. Catal., 78, 109-123(1991). https://doi.org/10.1016/0166-9834(91)80092-B
  10. Ham, S. W., Soh, B. W. and Nam, I. S., "Sulfur Poisoning and Tolerance of SCR Catalyst to Remove NO by $NH_3$," J. Ind. Eng. Chem Res., 15, 373-385(2004).
  11. Ham, S. W., Choi, H., Nam, I. S. and Kim, Y. G., "Effect of Copper Contents on Sulfur Poisoning of Copper Ion-Exchanged Mordenite for NO Reduction by $NH_3$," Ind. Eng. Chem. Res., 34, 1616-1623(1995). https://doi.org/10.1021/ie00044a014
  12. Dunn, J. P., Koppula, P. R., Stenger, H. G. and Wachs, I. E., "Oxidation of Sulfur Dioxide to Sulfur Trioxide over Supported Vanadia Catalysts," Appl. Catal. B: Environ., 19, 103-117(1998). https://doi.org/10.1016/S0926-3373(98)00060-5
  13. Chen, J. P. and Yang, R. T., "Selective Catalytic Reduction of NO with $NH_3$ on $SO_4^{-2}$/$TiO_2$ Superacid Catalyst," J. Catal., 139, 227-288(1993).
  14. Inomata, M., Miyamoto, A. and Murakami, Y., "Mechanism of the Reaction of NO and $NH_3$ on Vanadium Oxide Catalyst in the Presence of Oxygen Under the Dilute Gas Condition," J. Catal., 62, 140-148(1980). https://doi.org/10.1016/0021-9517(80)90429-7
  15. Takagi, M., Kawai, T., Soma, M., Onishi, T. and Tamaru, K., "The Mechanism of the Reaction Between $NO_x$ and $NH_3$ on $V_2O_5$ in the Presence of Oxygen," J. Catal., 50, 441-446(1977). https://doi.org/10.1016/0021-9517(77)90056-2
  16. Chen, J. P. and Yang, R. T., "Mechanism of Poisoning of the $V_2O_5$/$TiO_2$ Catalyst for the Reduction of NO by $NH_3$," J. Catal., 125, 411-420(1990). https://doi.org/10.1016/0021-9517(90)90314-A
  17. Kabayashi, M., Kuma, R. and Morita, A., "Low Temperature Selective Catalytic Reduction of NO by $NH_3$ over $V_2O_5$ Supported on $TiO_2$-$SiO_2$-$MoO_3$," Catal. Lett., 112, 37-44(2006). https://doi.org/10.1007/s10562-006-0161-4
  18. Kobayashi, M. and Hagi, M., "$V_2O_5$-$WO_3$$TiO_2$-$SiO_2$-$SO_4^{-2}$ Catalysts: Influence of Active Components and Supports on Activities in the Selective Catalytic Reduction of NO by $NH_3$ and in the Oxidation of $SO_2$, " Appl. Catal. B: Environ, 63, 104-113(2006). https://doi.org/10.1016/j.apcatb.2005.09.015
  19. Gillespie, R. J., "Fluorosulfuric Acid and Related Superacid Media," Acc. Chem. Res., 1, 202(1968). https://doi.org/10.1021/ar50007a002
  20. Choi, J.-H., Bae, M.-H. Jo, Y.-S. and Kim, J.-H., "Catalyst Coating Method for Candle Type Ceramic Filter," Korea patent, 100923024(2009).
  21. Kim, J. H. and Choi, J. H., "The Effect of Vanadium (V) Oxide Content of $V_2O_5$-$WO_3$$TiO_2$ Catalyst on the Nitrogen Oxides Reduction and $N_2O$ Formation," Korean Chem. Eng. Res., 51(3), 313(2013). https://doi.org/10.9713/kcer.2013.51.3.313
  22. Schulz, K. and Durst, M., Advantages of an integrated system for hot gas filtration using rigid ceramic element, Filtration & Separation, January/February, 25-28(1994).

Cited by

  1. 세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능 vol.24, pp.1, 2014, https://doi.org/10.7464/ksct.2018.24.1.027