• Title/Summary/Keyword: polynomial stability

Search Result 116, Processing Time 0.028 seconds

Improved Method Evaluating the Stiffness Matrices of Thin-walled Beam on Elastic Foundations (탄성지반위에 놓인 박벽보의 강성행렬산정을 위한 개선된 해석기법)

  • Kim, Nam-Il;Jung, Sung-Yeop;Lee, Jun-Seok;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.113-125
    • /
    • 2007
  • Improved numerical method to obtain the exact stiffness matrices is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric and open/closed thin-walled beam on elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column This numerical technique is accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Next polynomial expressions as trial solutions are assumed for displacement parameters corresponding to zero eigenvalues and the eigenmodes containing undetermined parameters equal to the number of zero eigenvalues are determined by invoking the identity condition. And then the exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions. In order to illustrate the accuracy and the practical usefulness of this study, the numerical solutions are compared with results obtained from the thin-walled beam and shell elements.

Design of Low Order Cascade Controller to Reduce the Effects of Its Zeros (제어기 영점의 영향을 감소시키는 종속형 저차 제어기의 설계)

  • Kim, Young-Chol;Kim, Jae-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1048-1057
    • /
    • 2008
  • This paper represents a design method for PID or low-order controllers cascaded with a linear plant in the unit feedback system where it is required to meet the given time response specifications such as overshoot and settling time. This problem is difficult to solve because the zeros of the controller appear in the numerator of the overall system and thus those zeros may make the time response design difficult. In this paper, we propose a new approach based on the partial model matching and the so called K-polynomial. The partial matching problem is formulated to an optimization problem in which a quadratic function of coefficient errors between a target model and the resulting closed loop system is minimized. For the sake of satisfying the closed loop stability, a set of quadratic constraints associated with the cost function is introduced. As a result, the controller designed meets both time response requirements and the closed loop stability, if any. It is shown through several examples that the present method can be easily applied to these problems.

Bi-stability in a vertically excited rectangular tank with finite liquid depth

  • Spandonidis, Christos C.;Spyrou, Kostas J.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.229-238
    • /
    • 2012
  • We discuss the bi - stability that is possibly exhibited by a liquid free surface in a parametrically - driven two-dimensional (2D) rectangular tank with finite liquid depth. Following the method of adaptive mode ordering, assuming two dominant modes and retaining polynomial nonlinearities up to third-order, a nonlinear finite-dimensional nonlinear modal system approximation is obtained. A "continuation method" of nonlinear dynamics is then used in order to elicit efficiently the instability boundary in parameters' space and to predict how steady surface elevation changes as the frequency and/or the amplitude of excitation are varied. Results are compared against those of the linear version of the system (that is a Mathieu-type model) and furthermore, against an intermediate model also derived with formal mode ordering, that is based on a second - order ordinary differential equation having nonlinearities due to products of elevation with elevation velocity or acceleration. The investigation verifies that, in parameters space, there must be a region, inside the quiescent region, where liquid surface instability is exhibited. There, behaviour depends on initial conditions and a wave form would be realised only if the free surface was substantially disturbed initially.

A Study on the Quantatitive Voltage Stability Index Considering Load Voltage Characteristics (부하의 전압특성을 고려한 정량적 전압안정성 지표에 관한 연구)

  • Jeong, Joon-Mo;Lee, Bong-Yong;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.3-5
    • /
    • 1994
  • It is shown that the power flow considering the voltage characteristic of the composite load has some difference comparing with conventional load flow in this paper. When the load flow is used in a study of the static voltage stability, it is necessary to consider the voltage characteristic of load, since the composite load of a typical power system bas constant power, constant current, and constant impedance characteristic. The load is modeled to a polynomial form in here, and used in solving the load flow problem. In this way, the effect which the voltage characteristic of the load has on several voltage collapse proximity indicator based on sensitivities is compared with the conventional load flow, or with another load model having a different voltage characteristic. In this paper, the voltage collapse proximity indicator using the sensitivity of real power for transmission loss is also proposed, and compared with other indicators.

  • PDF

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.

Design of PI, PD and PID Controllers with Time Response Specifications (시간응답 설계규격을 만족하는 PI, PD, PID제어기 설계)

  • 김근식;조태신;김영철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.259-269
    • /
    • 2003
  • This paper considers the problem of determining a set of PI, PD and PID controller gains, for a given linear time invariant plant, that meets or exceeds the closed loop step response specifications. The proposed method utilizes two recent results: for a given system, (1) finding a set of stabilizing PI, PD and PID gains and (2) the relationship between time response (overshoot and speed) and the coefficients of the characteristic polynomial. The method allows us to extract a subset of PI, PD and PID gains that meets stability as well as time domain performance requirements. The intersections of two dimensional sets described by linear and quadratic inequalities in the controller design space are need to be Identified through numerical computation. The procedure is illustrated by examples.

Design of First Order Controllers with Time Domain Specifications(ICCAS 2003)

  • Kim, Keun-Sik;Woo, Young-Tae;Kim, Young-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1-6
    • /
    • 2003
  • This paper considers the problem of determining a set of stabilizing first order controller gains, for a given linear time invariant plant, that meets or exceeds closed loop step response specifications. The method utilizes two recent results: For a given system, (1) finding a set of stabilizing first order controller gains and (2) the relationship between time response (overshoot and speed) and the coefficients of the characteristic polynomial. The method allows us to extract a subset of first order controller gains that meets stability as well as time domain performance requirements. The computations involved are the intersections of two dimensional sets described by linear and quadratic inequalities in the controller design space. It is illustrated by examples.

  • PDF

Analysis of a Tunnel-Diode Oscillator Circuit by Predictor-Corrector Method (프레딕터.코렉터방법에 의한 터널다이오드 발진회로의 해석)

  • 이정한;차균현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.6
    • /
    • pp.45-55
    • /
    • 1973
  • This paper discusses the nonlinear time-invarient circuit composed of a tunnel diode. Prior to determine the solution of the nonlinear network which has negative resistance elements, the static characteristics of the nonlinear resistance elements need to be represented by function. Polynomial curve fitting is discussed to represent the static characteristies by least squares approximation. In order to solve the nonlinear network, the state equations for the networks are set up and solved by prediction corrector method. Finally, the limit cycle is plotted to discuss the stability of the nonlinear network and the oscillation condition.

  • PDF

Dynamic Modeling of Automotive Shock Absorbers Using Simple Nonlinear Models (단순 비선형 모델을 이용한 자동차 충격흡수기의 동특성 모델링 기법 연구)

  • 한형석;서정원;노규석;허승진;김기훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.156-162
    • /
    • 2003
  • The shock absorber is a part having a direct influence on the ride comfort, stability and dynamic load prediction of a vehicle. Thus, a rationally modeled shock absorber should be required in the dynamic analysis of vehicles. This thesis presents a modified model, based on Worden's hyperbolic tangent function, in order to fit experimental data on the velocity-damping force of a shock absorber. The hyperbolic tangent function correctly indicates the characteristics of a shock absorber, and has the advantage of containing physical causality. To evaluate the method, comparative evaluations of the linear model, the 5th polynomial model and Worden's model were carried out. The function presented in this paper is not only simple but also makes it possible to estimate the function coefficients easily and visually. In addition, it has the advantage of containing physical causality. Lastly, it effectively models the damping force of a shock absorber.