• Title/Summary/Keyword: polynomial order

Search Result 878, Processing Time 0.028 seconds

Geometric Accuracy of KOMPSAT-2 PAN Data According to Sensor Modeling (센서모델링 특성에 따른 KOMPSAT-2 PAN 영상의 정확도)

  • Seo, Doo-Chun;Yang, Ji-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 2009
  • In order to help general users to analyze the KOMPSAT-2 data, an application of sensor modeling to commercial software was explained in this document. The sensor modeling is a basic step to extract the quantity and quality information from KOMPSAT-2 data. First, we introduced the contents and type of ancillary data offered with KOMPSAT-2 PAN image data, and explained how to use it with commercial software. And then, we applied the polynomial-base and refine RFM sensor modeling with ground control points. In the polynomial-base sensor modeling, the accuracy which is average RMSE of check points is highest when the satellite position was calculated by type of 1st order function and the satellite attitude was calculated by type of 1st order function for (Y axis), (Z axis) or constant for (X axis), (Y axis), (Z axis) in perspective center position and satellite attitude parameters. As a result of refine RFM sensor modeling, the accuracy is less than 1 pixel when we applied affine model..

  • PDF

A New Approach of Self-Organizing Fuzzy Polynomial Neural Networks Based on Information Granulation and Genetic Algorithms (정보 입자화와 유전자 알고리즘에 기반한 자기구성 퍼지 다항식 뉴럴네트워크의 새로운 접근)

  • Park Ho-Sung;Oh Sung-Kwun;Kim Hvun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • In this paper, we propose a new architecture of Information Granulation based genetically optimized Self-Organizing Fuzzy Polynomial Neural Networks (IG_gSOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially information granulation and genetic algorithms. The proposed IG_gSOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). To evaluate the performance of the IG_gSOFPNN, the model is experimented with using two time series data(gas furnace process and NOx process data).

Failure Prediction and Behavior of Cut-Slope based on Measured Data (계측결과에 의한 절토사면의 거동 및 파괴예측)

  • Jang, Seo-Yong;Han, Heui-Soo;Kim, Jong-Ryeol;Ma, Bong-Duk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.165-175
    • /
    • 2006
  • To analyze the deformation and failure of slopes, generally, two types of model, Polynomial model and Growth model, are applied. These two models are focused on the behavior of the slope by time. Therefore, this research is more focused on predicting of slope failure than analyzing the slope behavior by time. Generally, Growth model is used to analyze the soil slope, to the contrary, Polynomial model is used for rock slope. However, 3-degree polynomial($y=ax^3+bx^2+cx+d$) is suggested to combine two models in this research. The main trait of this model is having an asymptote. The fields to adopt this model are Gosujae Danyang(soil slope) and Youngduk slope(rock slope), which are the cut-slope near national road. Data from Gosujae are shown the failure traits of soil slope, to the contrary, those of Youngduk slope are shown the traits of rock slope. From the real-time monitoring data of the slope, 3-degree polynomial is proved as excellent system to analyze the failure and behavior of slope. In case of Polynomial model, even if the order of polynomials is increased, the $R^2$ value and shape of the curve-fitted graph is almost the same.

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M.;Kafi, L.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1353-1368
    • /
    • 2015
  • A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

A study on nonlinear channel equalization using RBF network (RBF 네트워크를 이용한 비선형 채널 등화에 관한 연구)

  • 전선도;위진우;강철호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.64-71
    • /
    • 1997
  • Digital communication channels are imparied by linear effects such as dispersion, ISI(intersymbol Interference), fading phenomenon etc. But, the practical channel equalization system is required to design for compensating the nonlinear distortion caused by harmonic distortion etc. This paper is a study on the performance of nonlinear channel equalization using RBF(Radial Basis Funclion) network, which has the equivalent structure to the optimal Basian filter. Expecially, the variance of RBF network is modifiedby nonlinear polynomial filters to compare the convergence characteristic of nonlinear channel equalization. Experimental results show that the modified RBF network achieves the faster convergence property than conventional RBF network. Moreover, the RBF network ofhigher order variance modified represents the better performance than that of lower order variance in the bandpass channels and second/third order polynomial channels.

  • PDF

A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis (다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구)

  • Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, the development of a weight estimation model of electronic scale with nonlinear characteristics is presented using polynomial regression analysis. The output voltage of the load cell was measured directly using the reference mass. And a polynomial regression model was obtained using the matrix and curve fitting function of MS Office Excel. The weight was measured in 100g units using a load cell electronic scale measuring up to 5kg and the polynomial regression model was obtained. The error was calculated for simple($1^{st}$), $2^{nd}$ and $3^{rd}$ order polynomial regression. To analyze the suitability of the regression function for each model, the coefficient of determination was presented to indicate the correlation between the estimated mass and the measured data. Using the third order polynomial model proposed here, a very accurate model was obtained with a standard deviation of 10g and the determinant coefficient of 1.0. Based on the theory of multi regression model presented here, it can be used in various statistical researches such as weather forecast, new drug development and economic indicators analysis using logistic regression analysis, which has been widely used in artificial intelligence fields.

VALUE DISTRIBUTION OF SOME q-DIFFERENCE POLYNOMIALS

  • Xu, Na;Zhong, Chun-Ping
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2016
  • For a transcendental entire function f(z) with zero order, the purpose of this article is to study the value distributions of q-difference polynomial $f(qz)-a(f(z))^n$ and $f(q_1z)f(q_2z){\cdots}f(q_mz)-a(f(z))^n$. The property of entire solution of a certain q-difference equation is also considered.

REFLEXIVE PROPERTY ON IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1957-1972
    • /
    • 2013
  • The reflexive property for ideals was introduced by Mason and has important roles in noncommutative ring theory. In this note we study the structure of idempotents satisfying the reflexive property and introduce reflexive-idempotents-property (simply, RIP) as a generalization. It is proved that the RIP can go up to polynomial rings, power series rings, and Dorroh extensions. The structure of non-Abelian RIP rings of minimal order (with or without identity) is completely investigated.