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REFLEXIVE PROPERTY ON IDEMPOTENTS

Tai Keun Kwak and Yang Lee

Abstract. The reflexive property for ideals was introduced by Mason
and has important roles in noncommutative ring theory. In this note we
study the structure of idempotents satisfying the reflexive property and
introduce reflexive-idempotents-property (simply, RIP) as a generaliza-
tion. It is proved that the RIP can go up to polynomial rings, power
series rings, and Dorroh extensions. The structure of non-Abelian RIP
rings of minimal order (with or without identity) is completely investi-
gated.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. Given a ring R the polynomial ring (resp., the power series ring) with an
indeterminate x over R is denoted by R[x] (resp., R[[x]]). For any polynomial
f(x) in R[x], let Cf(x) denote the set of all coefficients of f(x). Denote the
n by n full matrix ring over R by Matn(R) and the n by n upper triangular
matrix ring over R by Un(R). Use Eij for the matrix with (i, j)-entry 1 and
elsewhere 0. Let Id(R) be the set of all idempotent elements of R. Denote
{a ∈ Un(R) | the diagonal entries of a are all equal} by Dn(R). Z and Zn

denote the ring of integers and the ring of integers modulo n, respectively.
GF (pn) denotes the Galois field of order pn for a prime p and n ≥ 1. J(R)
denotes the Jacobson radical of R. |S | denotes the cardinality of given a set
S.

Mason [18] introduced the reflexive property for ideals, and then this concept
was generalized by Kim and Baik [9, 10] by defining idempotent reflexive right
ideals and rings. A right ideal I of a ring R (possibly without identity) is called
reflexive [18] if aRb ⊆ I implies bRa ⊆ I for a, b ∈ R. R is called reflexive if 0 is
a reflexive ideal (i.e., aRb = 0 implies bRa = 0 for a, b ∈ R.) In [12], Kwak and
Lee characterized aspects of the reflexive and one-sided idempotent reflexive
properties, showing that the concept of idempotent reflexive ring is not left-
right symmetric [12, Example 3.3]. For a one-sided ideal I of a ring R, I is
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called right idempotent reflexive [12, Definition 3.1] if aRe ⊆ I implies eRa ⊆ I
for any a, e2 = e ∈ R, and a ring R is called right idempotent reflexive if 0 is
a right reflexive ideal. Left idempotent reflexive ideals and rings are defined
similarly. If a ring is both left and right idempotent reflexive, then the ring is
called an idempotent reflexive ring (refs. [9, 10]). Reflexive rings are obviously
one-sided idempotent reflexive, but not conversely by [12, Example 2.3(1)]. It
is proved that the reflexive condition is Morita invariant [12, Theorem 2.6]. A
(right idempotent) reflexive ring which is not semiprime (resp., reflexive) is also
constructed from any semiprime (resp., reflexive) ring [12, Proposition 2.5 and
Theorem 3.9].

Recall that a ring is reduced if it has no nonzero nilpotent elements. Cohn
[4] called a ring R reversible if ab = 0 implies ba = 0 for a, b ∈ R. Due to Bell
[2], a right (or left) ideal I of a ring R is said to have the insertion of factors

property (simply, IFP) if ab ∈ I implies aRb ⊆ I for a, b ∈ R. A ring R is called
IFP if the zero ideal of R has the IFP. A ring R is called 2-primal [3] if the
prime radical of R coincides with the set of all nilpotent elements of R. In [17],
a ring R is called NI if the upper nilradical of R coincides with the set of all
nilpotent elements of R. IFP rings are 2-primal and 2-primal rings are NI, but
the converses are not true. Also note that the prime radical of a 2-primal ring
and the upper nilradical of an NI ring are reflexive ideals.

Rege and Chhawchharia [20] called a ring R Armendariz if ab = 0 for all
a ∈ Cf(x) and b ∈ Cg(x) whenever any polynomials f(x), g(x) over R satisfy
f(x)g(x) = 0. A ring is called Abelian if every idempotent in it is central.
It is well-known that IFP rings and Armendariz rings are Abelian. Every
Abelian ring is idempotent reflexive, and hence IFP rings and Armendariz
rings are idempotent reflexive. Note that reversible rings are reflexive by [12,
Proposition 2.2], but IFP and the reflexive ring property don’t imply each other
by [12, Example 2.3].

In this paper, we study on rings with reflexive-idempotents-property (sim-
ply, RIP) which is a generalization of one-sided idempotent reflexive rings. It
is proved that the one-sided idempotent reflexive property and the reflexive-
idempotents-property coincide for a right principally quasi-Baer ring (Propo-
sition 2.11), and that R is an RIP ring if and only if R[x] is an RIP ring if and
only if R[[x]] is an RIP ring (Theorem 3.1), and that a ring R is RIP if and only
if Dn(R) is RIP (Theorem 3.3). If R is a minimal non-Abelian RIP ring, then
R is of order 16 and is isomorphic to Mat2(Z2) (Theorem 4.2). We additionally
give an example that RIP rings need not be directly finite (Example 2.13).

2. Properties of RIP rings

We begin with the following.

Definition 2.1. A ring R is called to have the reflexive-idempotents-property

(simply, RIP) if R satisfies the property that

eRf = 0 implies fRe = 0 for any e, f ∈ Id(R).
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A ring shall be called RIP if it satisfies the reflexive-idempotents-property.

It can be easily checked that every one-sided idempotent reflexive ring is RIP,
entailing that Abelian rings are RIP. Hence, the class of RIP rings contains
IFP rings and Armendariz rings. Note that the IFP ring property and the
Armendariz ring property don’t imply each other in general.

The following example shows that there exist RIP rings which are not one-
sided idempotent reflexive.

Example 2.2. Let F be a field of characteristic zero and A = F 〈a, b, c〉 be the
free algebra with three non-commuting indeterminates a, b, c over F .

(1) Due to [12, Example 3.3], let I be the ideal of A generated by

aAb, a2 − a

and R = A/I. Then R is a right idempotent reflexive ring but not left idem-
potent reflexive by the computation in [12, Example 3.3]. Note that R is an
RIP ring since R is right idempotent reflexive.

(2) Due to [12, Example 3.3], let I be the ideal of R generated by

aAb, b2 − b

and R = A/I. Then R is left idempotent reflexive but not right idempotent
reflexive by the computation in [12, Example 3.3]. Note that R is an RIP ring
since R is left idempotent reflexive.

The classes of RIP rings and NI rings do not contain each other by the
following example.

Example 2.3. (1) Let F be a field and R = ( F F
0 F ). Then R is a 2-primal

ring and so an NI ring. For E11, E22 ∈ Id(R), we have E22RE11 = 0 but
E11RE22 6= 0. Thus, R is not RIP.

We also see that the class of RIP rings is not closed under subrings: Indeed,
R = ( F F

0 F ) is a subring of Mat2(F ) which is a reflexive ring (and so an RIP
ring) by [12, Theorem 2.6(2)].

(2) Let K be a field and n ≥ 2. Let R = K〈a, b | an = 0〉 be the free algebra
with two non-commuting indeterminates a, b over K with an = 0. Then R is
an Armendariz ring such that the set of all nilpotent elements of R is not an
ideal by [1, Example 4.8]. Hence, R is RIP but not NI.

For a nonempty subset X of a ring R, we write rR(X) = {c ∈ R | Xc = 0}
which is called the right annihilator of X in R. The left annihilator is defined
similarly and denoted by ℓR(X).

Proposition 2.4. For a ring R, the following are equivalent:
(1) R is an RIP ring;
(2) For e ∈ Id(R), rR(eR) ∩ Id(R) = ℓR(Re) ∩ Id(R);
(3) For any nonempty subsets E and F of Id(R), ERF = 0 implies FRE =

0;
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(4) IJ = 0 implies JI = 0 for all right ideals I, J of R where I and J are

right ideals generated by subsets of Id(R); and
(5) IJ = 0 implies JI = 0 for all ideals I, J of R where I and J are ideals

generated by subsets of Id(R).

Proof. (1)⇔(2) is shown from the definition.
(1)⇒(3) Let ERF = 0 for E,F ⊆ Id(R). Then for any e ∈ E, f ∈ F, we

have eRf = 0. Since R is RIP, fRe = 0 and so FRE = 0.
(3)⇒(4) Let I = ER and J = FR where E,F ⊆ Id(R). Suppose IJ = 0.

Then ERF ⊆ IJ = 0 and so by the condition (3), FRE = 0 and so JI = 0.
(4)⇒(5) Let I = RER and J = RFR where E,F ⊆ Id(R). Suppose IJ = 0.

Then ERFR ⊆ IJ = 0. By the condition (4), FRER = 0 and so RFRER = 0.
Hence, JI = 0.

(5)⇒(1) Suppose that eRf = 0 for e, f ∈ Id(R). Then ReRRfR = 0 and
so by the condition (5), we have RfRReR = 0, entailing that R is an RIP
ring. �

Proposition 2.5. (1) If R is an RIP ring, then so is eRe for each e ∈ Id(R).
(2) Let R/I be an RIP ring for some ideal I of a ring R. If I is a reduced

ring (possibly without identity), then R is RIP.

(3) For a central idempotent e of a ring R, eR and (1− e)R are RIP if and

only if R is RIP.

Proof. (1) Suppose that R is an RIP ring. Let f, f ′ ∈ Id(eRe) such that
f(eRe)f ′ = 0. Then fe = f = ef and f ′e = f ′ = ef ′. Since R is RIP,
fRf ′ = 0 implies 0 = f ′Rf = f ′(eRe)f . Thus eRe is RIP.

(2) Let eRf = 0 with e, f ∈ Id(R). Since R/I is RIP, we have fRe ⊆ I,
and so (fReR)2 = 0 implies fRe = 0 since I is reduced. Hence, R is RIP.

(3) Assume that eR and (1 − e)R are RIP. Let fRf ′ = 0 for f, f ′ ∈ Id(R).
Then efRf ′ = 0 and (1 − e)fRf ′ = 0, and so ef ′Rf = 0 and (1− e)f ′Rf = 0
by assumption. Thus, f ′Rf = ef ′Rf +(1−e)f ′Rf = 0, proving that R is RIP.
The converse is trivial by the result (1). �

If Matn(R) is an RIP ring, then R is an RIP ring by Proposition 2.5(1),
since R ∼= RE11 = E11Matn(R)E11. But we don’t know whether the converse
is true.

Question. If R is an RIP ring, then is Matn(R) RIP?

The condition “I is a reduced ring” in Proposition 2.5(2) cannot be dropped
by the following.

Example 2.6. Consider the ring R = ( F F
0 F ) where F is a field, in Example 2.3,

which is not RIP. The only nonzero proper ideals of R are I1 = ( F F
0 0 ) , I2 =

( 0 F
0 F ) and I3 = ( 0 F

0 0 ) , and they are not obviously reduced. But R/I1 and
R/I2 are isomorphic to F and R/I3 = {( a 0

0 c ) + I3 | a, c ∈ F} is a reduced ring.
Therefore each R/Ii is RIP for i = 1, 2, 3.
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Recall that a ring R is called local if R/J(R) is a division ring. A ring R is
called semilocal if R/J(R) is semisimple Artinian, and R is called semiperfect

if R is semilocal and idempotents can be lifted modulo J(R). Local rings are
Abelian and semilocal.

Proposition 2.7. (1) Let Rλ (λ ∈ Λ) be rings. The following are equivalent:
(i) Rλ is RIP for each λ ∈ Λ.
(ii) The direct product of Rλ (λ ∈ Λ) is RIP.

(iii) The direct sum (possibly without identity) of Rλ (λ ∈ Λ) is RIP.

(2) A ring R is Abelian and semiperfect if and only if R is a finite direct

sum of local RIP rings.

Proof. (1) (i)⇒(ii) Assume (i). Let R be the direct product of RIP rings Rλ

(λ ∈ Λ). Suppose that (eλ)R(fλ) = 0 for (eλ), (fλ) ∈ Id(R). Then eλRλfλ = 0
for each λ ∈ Λ. Note that eλ, fλ ∈ Id(Rλ) for each λ ∈ Λ. Since Rλ is RIP,
fλRλeλ = 0 for each λ ∈ Λ. Thus (fλ)R(eλ) = 0 and so R is RIP.

(ii)⇒(i) Assume (ii). Let e = (eλ) ∈ Id(R) such that eλ = 1 and eγ = 0 for
all γ 6= λ. Then eRe ∼= Rλ, and hence Rλ is RIP by Proposition 2.5(1).

(i)⇔(iii) It is similar to the above.
(2) Suppose that R is Abelian and semiperfect. Since R is semiperfect, R

has a finite orthogonal set {e1, e2, . . . , en} of local idempotents whose sum is
1 by [14, Proposition 3.7.2], say R =

∑n

i=1 eiR such that each eiRei is a local
ring. Since R is Abelian, each eiR is ideals of R with eiR = eiRei. But each
eiR is also an RIP ring by Proposition 2.5(1) since R is Abelian.

Conversely assume that R is a finite direct sum of local RIP rings. Then R is
Abelian and semiperfect since local rings are both Abelian and semiperfect. �

The class of RIP rings is not closed under homomorphic images.

Example 2.8. Let K be a field and R = K〈a, b〉. Then R is reduced and so
reflexive. Let I be the ideal of R generated by

aRb, a2 − a and b2 − b.

Then aRb ⊆ I, but ba ∈ bRa * I for a, b ∈ Id(R/I). We conclude that R/I is
not RIP.

Example 2.9. Let R be any ring and n ≥ 2. Then the n by n upper triangular
matrix ring Un(R) is not an RIP ring. For E11, Enn ∈ Id(Un(R)), we have
EnnUn(R)E11 = 0 but E11Un(R)Enn = E11(RE1n + RE2n + · · · + REnn) =
RE1n 6= 0.

Next let R be any nonzero ring possibly without identity and suppose that
there exist nonzero idempotents e, f ∈ R with relations ef = e. Then the n by n
upper triangular matrix ring Un(R) (n ≥ 2) is not an RIP ring. Let Aij = eEij

and Bij = fEij for i, j = 1, . . . , n. Then Aii, Bii ∈ Id(Un(R)), and we have
BnnUn(R)A11 = 0 but A11Un(R)Bnn contains A11(B1n + B2n + · · ·+Bnn) =
A11B1n = A1n = efEin = eEin 6= 0.
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For a ring R, e ∈ Id(R) is called right (resp., left) semicentral if er = ere
(resp., re = ere) for all r ∈ R. We use Sr(R) (resp., Sℓ(R)) and B(R) for
the sets of right (resp., left) semicentral idempotents and central idempotents
of R. Observe that Sr(R) ∩ Sℓ(R) = B(R) and if R is a semiprime ring, then
Sℓ(R) = B(R) = Sr(R).

For a prime ideal P of a ring R, O(P ) = {a ∈ R | aRb = 0 for some
b ∈ R\P}, and a ring R is called torsion free if O(P ) = 0 for some prime ideal
P of R.

Proposition 2.10. (1) Every one-sided semicentral idempotent element of an

RIP ring R is central.

(2) Let R be an RIP ring. If R is torsion free, then B(R) = {0, 1}.

Proof. (1) e ∈ Sℓ(R) if and only if (1 − e)Re = 0 if and only if eR(1− e) = 0
if and only if e ∈ Sr(R).

(2) Assume that O(P ) = 0 for some prime ideal P of R. Let e ∈ B(R) =
Sℓ(R) by (1). Then (1 − e)Re = 0 and thus eR(1 − e) = 0 since R is RIP. If
e /∈ P , then 1 − e ∈ O(P ) = {0}, and so e = 1. If e ∈ P , then 1 − e /∈ P , and
hence e ∈ O(P ) = {0}, and so e = 0. �

Recall that a ring R is called right (resp., left) principally quasi-Baer (or
simply, right (resp., left) p.q.-Baer) if the right (resp., left) annihilator of a
principal right (resp., left) ideal of R is generated by an idempotent, and that
R is called p.q.-Baer if it is both left and right p.q.-Baer.

Proposition 2.11. Let R be a right p.q.-Baer ring. Then the following are

equivalent:
(1) R is a semiprime ring;
(2) R is a reflexive ring;
(3) R is a right idempotent reflexive ring;
(4) R is a left idempotent reflexive ring;
(5) R is an RIP ring; and
(6) Sℓ(R) = B(R) = Sr(R).

Proof. (1)⇔(2)⇔(3)⇔(4)⇔(6) by [12, Proposition 3.15], (4)⇒(5) by definition
and (5)⇒(6) by Proposition 2.10(1). �

Corollary 2.12. Let R be an RIP ring. Then R is a right p.q.-Baer ring if

and only if R is a p.q.-Baer ring.

Proof. Every right p.q.-Baer and RIP ring R is one-sided idempotent reflexive
by Proposition 2.11. Thus R is left p.q.-Baer by [12, Proposition 3.16]. �

A ring R is usually called directly finite if ab = 1 implies ba = 1 for a, b ∈ R.
Note that both NI rings and Abelian rings are directly finite by [7, Proposition
2.7(1)] and [15, Lemma 3.4], respectively. As in Example 2.3, ( F F

0 F ), where F
is a field, is not RIP but directly finite. In the following we see RIP rings which
are not directly finite.
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Example 2.13. (1) Let R be the ring of column finite infinite matrices over
a field. Then R is von Neumann regular and so semiprime (hence RIP), but
R is not directly finite as can be seen by the matrices A = E12 + E23 + · · · +
En(n+1) + · · · and B = E21 +E32 + · · ·+E(n+1)n + · · · such that AB = 1 but
BA = E22 + E33 + · · ·+ E(n+1)(n+1) + · · · 6= 1.

(2) Shepherdson constructed in [21] a domain D such that M2(D) is not
directly finite. But M2(D) is prime (hence RIP).

Note. Let K = Z2 and A = K〈a, b〉 be the free algebra generated by the
noncommuting indeterminates a, b over K. Let I be the ideal of A generated
by ab − 1. Set R = A/I and identify a and b with their images in R for
simplicity. Then R has the relations ab = 1. It is obviously true that R is not
directly finite.

K[x, y] denotes the polynomial ring with indeterminates over K. Every
element in R is expressed by

k + aif0(a) + bjf1(b) + bmf2(a, b),

where k ∈ K, i, j,m ≥ 1, f0(x), f1(x) ∈ K[x], f2(x, y) ∈ K[x, y], and every
nonzero non-constant monomial of f2(a, b) is of the form bsat (s ≥ 0 and
a ≥ 1). Let 0 6= e = k + aif0(a) + bjf1(b) + bmf2(a, b) be such that e2 = e.

Case 1. k = 0, i.e., e = aif0(a) + bjf1(b) + bmf2(a, b).
In this case we first have

aif0(a) = aif0(a)(a
if0(a) + bjf1(b) + bmf2(a, b))

= f0(a)(a
2if0(a) + aibjf1(b) + aibmf2(a, b)).

Here assume f0(a) 6= 0. Then f1(b) = 0 and e = aif0(a) + bjf1(b) + bmf2(a, b).
But e2 = e yields f2(a, b) = 0, entailing e = aif0(a). We also get e = aif0(a) =
0 from e2 = e, a contradiction. So aif0(a) = 0, i.e., e = bjf1(b) + bmf2(a, b).
Similar computation gives bjf1(b) = 0, so e = bmf2(a, b). Then we have
bmf2(a, b) = e = e2 = bmf2(a, b)b

mf2(a, b). Thus we can conclude that
e = bmf2(a, b) is of the form

e =
∑

finite

bsat for s, t ≥ 1.

Case 2. k = 1, i.e., e = 1 + aif0(a) + bjf1(b) + bmf2(a, b).
In this case we first have 1 + f + f + f2 = e2 = e = 1 + f , where f =

aif0(a) + bjf1(b) + bmf2(a, b). Then f + f2 = 0, so f = −f2 = −(−f)2 and
(−f)2 = −f . By the computation in the case 1, we have −f is of the form
∑

finite b
sat for s, t ≥ 1. Thus e is of the form

e = 1−
∑

finite

bsat for s, t ≥ 1,

where it is understood that a0 = b0 = 1.
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Therefore the set of all idempotents in R is

{0, 1,
∑

finite

bsat, 1−
∑

finite

bsat for s, t ≥ 1}.

For example, we can see bi−1ai−1 − biai (for i ≥ 1) to be found by Jacobson in
[8]. Here we raise the following two questions:

(1) What are more exact expressions of the idempotents
∑

finite b
sat?

(2) Is the ring R RIP?

3. Extensions of RIP rings

In this section we observe the reflexive-idempotents-property of various kinds
of ring extensions. We first consider the cases of polynomial rings and power
series rings. The following includes the result of [12, Theorem 3.13].

Theorem 3.1. (1) R is an RIP ring if and only if R[x] is an RIP ring.

(2) R is an RIP ring if and only if R[[x]] is an RIP ring.

(3) R is a right (resp., left) idempotent reflexive ring if and only if R[x] is a
right (resp., left) idempotent reflexive ring.

(4) R is a right (resp., left) idempotent reflexive ring if and only if R[[x]] is
a right (resp., left) idempotent reflexive ring.

Proof. We apply the method in the proof of [12, Theorem 3.13].
(1) Suppose that R is an RIP ring. Note that f(x)R[x]g(x) = 0 if and

only if f(x)Rg(x) = 0 for f(x), g(x) ∈ R[x]. Let e(x) =
∑m

i=0 eix
i, f(x) =

∑n
j=0 fjx

j ∈ Id(R[x]) such that e(x)Rf(x) = 0. From e2(x) = e(x), we have

e20 = e0, eh =
∑

u+v=h

euev for h = 1, 2, . . . ,m.

In this situation, note that eh ∈ (e0, . . . , eh−1) for all h where (e0, . . . , eh−1)
denotes the ideal of R generated by e0, . . . , eh−1. Thus eh ∈ (e0) inductively
for all h = 0, 1, . . . ,m, where (e0) = Re0R. Similarly we have fk ∈ (f0) for all
k = 0, 1, . . . , n.

If e0 = 0, then e(x) = 0 since every eh is contained in (e0), entailing
f(x)Re(x) = 0. So assume e0 6= 0. From e(x)Rf(x) = 0, we get e0Rf0 =
0. Since R is RIP and e0, f0 ∈ Id(R), we have f0Re0 = 0. This yields
(Rf0R)R(Re0R) = 0. But ei ∈ Re0R and fj ∈ Rf0R for all i, j. This im-
plies fjRei = 0 for all i, j, entailing f(x)R[x]e(x) = 0. We conclude that R[x]
is RIP.

Conversely, suppose that R[x] is RIP. Let eRf = 0 for e, f ∈ Id(R). Then
eR[x]f = 0, and so fR[x]e = 0 and fRe = 0. Thus R is RIP.

(2) The proof is similar by much to the proof of (1).
(3) The proof for an left idempotent reflexive ring is similar to the proof of

(1), and the case of a right idempotent reflexive ring is also obtained symmet-
rically but we write it for completeness. Suppose that R is a right idempotent
reflexive ring. Let f(x) =

∑m

i=0 aix
i, e2(x) = e(x) =

∑n

j=0 ejx
j ,∈ R[x] such
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that f(x)Re(x) = 0. By the proof of (1), we have eh ∈ (e0) inductively for all
h = 0, 1, . . . , n. We assume e0 6= 0. From f(x)Re(x) = 0, we get a0Re0 = 0
and a0Re0R = 0. This yields a0Reh = 0 (equivalently, a0Re(x) = 0) for all
h = 0, 1, . . . , n since eh ∈ (e0) for all h. Consequently (

∑m

i=1 aix
i)Re(x) = 0.

Then a1Re0 = 0, and we also have a1Re(x) = 0 similarly. Proceeding in this
manner, we inductively obtain aiRe(x) = 0 for all i = 0, 1, . . . ,m. This implies
that

aiRej = 0 for all i = 0, 1, . . . ,m and j = 0, 1, . . . , n.

Especially, aiRe0 = 0 for all i = 0, 1, . . . ,m. Since R is right idempotent
reflexive and e0 ∈ Id(R), we have e0Rai = 0 (equivalently, e0Rf(x) = 0)
for all i = 0, 1, . . . ,m. This yields Re0Rf(x) = 0. But ej ∈ Re0R for all
j = 0, 1, . . . , n. This yields ejRai = 0 for all i, j, entailing e(x)R[x]f(x) = 0.
We conclude that R[x] is right idempotent reflexive.

The converse can be shown by the similar argument to the converse proof
of (1).

(4) The proof is similar by much to the proof of (3). �

Let R be an algebra over a commutative ring S. Following Dorroh [5], the
Dorroh extension of R by S is the Abelian group R⊕S with multiplication given

by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2) for ri ∈ R and si ∈ S.

Theorem 3.2. Let R be an algebra over a commutative ring S. Then R is

RIP if and only if the Dorroh extension D of R by S is RIP.

Proof. In the following computations, s ∈ S is identified with s1 ∈ R. Note
that R = {r + s | (r, s) ∈ D}, where s = s1.

Suppose that R is RIP. Let (e1, s1)D(e2, s2) = 0 for (e1, s1), (e2, s2) ∈ Id(D).
Since (ei, si) = (e2i +2siei, s

2
i ), we have that (ei+si1)

2 = e2i +2siei+s2i 1 = ei+
si1 is an idempotent in R. Since (e1, s1)(r, 0)(e2, s2) = (e1re2+s1re2+s2e1r+
s1s2r, 0) = (0, 0) and (e1 + s11)r(e2 + s21) = e1re2 + s1re2 + s2e1r+ s1s2r, we
have (e1+s11)R(e2+s21) = 0. Since R is RIP, we get (e2+s21)R(e1+s11) = 0.
Hence e2re1 + s2re1 + s1e2r + s1s2r = 0 for all r ∈ R. Let (r, s) ∈ D. Then

(e2, s2)(r, s)(e1, s1) = (e2(r+s1)e1 + s2(r+s1)e1 + s1e2(r+s1) + s1s2r, s2ss1)

= (−s1s2s1, s1ss2) = (0, 0),

where the last equality follows because (e1, s1)D(e2, s2) = 0 implies that s1ss2
= 0 for all s ∈ S. Therefore D is RIP.

Suppose now that D is RIP. Let eRf = 0 for e, f ∈ Id(R). Then

(e, 0)(r, s)(f, 0) = (e(r + s1)f, 0) = (0, 0)

for all (r, s) ∈ D. Since D is RIP, we have that (f, 0)D(e, 0) = 0. In particular,
(f, 0)(r, s)(e, 0) = (fre, 0) = (0, 0) for all r ∈ R. Therefore fRe = 0 and thus
R is RIP. �
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For a ring R and n ≥ 2, let

Vn(R) = {m = (mij) ∈ Dn(R) | mst = m(s+1)(t+1) for s = 1, . . . , n− 2 and

t = 2, . . . , n− 1}.

For any ring R and n ≥ 2, the n by n upper triangular matrix ring Un(R)
is not RIP by Example 2.9; while Matn(R), Dn(R) and Vn(R) over a reflexive
ring R are right idempotent reflexive rings by [12, Theorem 2.6(2) and Theorem
3.9], and so they are RIP rings. Moreover, we have the following.

Theorem 3.3. Let R be a ring and n ≥ 2.
(1) R is an RIP ring if and only if Dn(R) is an RIP ring.

(2) R is an RIP ring if and only if Vn(R) is an RIP ring.

(3) R is a right (resp., left) idempotent reflexive ring if and only if Dn(R) a
right (resp., left) idempotent reflexive ring.

(4) R is a right (resp., left) idempotent reflexive ring if and only if Vn(R) is
a right (resp., left) idempotent reflexive ring.

Proof. We apply the method in the proof of [12, Theorem 3.9].
(1) Note that if E2 = E = (eij) ∈ Dn(R) with eii = e for all i = 1, . . . , n,

then eij ∈ ReR by the proof of [12, Theorem 3.9]. Suppose that EDn(R)F = 0
for E = (eij), F = (fkl) ∈ Id(Dn(R)). Let D = (duv) be any in Dn(R). Set
eii = e, duu = d, fkk = f for all i, u, k = 1, . . . , n. Then e, f ∈ Id(R). Note
that d runs over R. Then edf = 0 for all d ∈ R and hence eRf = 0. Since R
is RIP and e, f ∈ Id(R), we have fRe = 0. This yields (RfR)R(ReR) = 0.
But eij ∈ ReR and fkl ∈ RfR for all i, j, k, l. This implies fklReij = 0 for all
i, j, k, l, entailing FDn(R)E = 0 and so Dn(R) is RIP.

Conversely, assume thatDn(R) is an RIP ring. Let eRf = 0 for e, f ∈ Id(R).
We have EDn(R)F = 0 for E = e

∑n

i=1 Eii, F = f
∑n

i=1 Eii ∈ Id(Dn(R)), and
thus FDn(R)E = 0 by assumption. This entails fRe = 0 and therefore R is
RIP.

(2) is the same as the proof of (1).
(3) The proof for a right idempotent reflexive ring is similar to the proof

of (1), but we write it for completeness. Suppose that ADn(R)E = 0 for
A = (aij), E

2 = E = (ekl) ∈ Dn(R). Let D = (duv) be any in Dn(R). Set
aii = a, duu = d, ekk = e = e2 for all i, u, k = 1, . . . , n. First, we get ade = 0
for all d ∈ R. So, we have adekl = 0 for all d ∈ R, since aReR = 0 and
ekl ∈ ReR as noted in the proof of (1). By these two results, we can also
obtain aijde = 0 through an induction on j − i. Since R is right idempotent
reflexive and e ∈ Id(R), we also get eRaij = 0 for all i, j, and then ReRaij = 0.
But ekl ∈ ReR for any k, j. Then eklRaij = 0 for all i, j, k, l. This yields
EDn(R)A = 0. Therefore Dn(R) is a right idempotent reflexive ring for n ≥ 2.

The converse can be shown by the similar argument to the converse proof
of (1), and the proof for an left idempotent reflexive ring is symmetrically
obtained to the above.

(4) is the same as the proof of (1). �
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Recall that for a ring R and an (R,R)-bimodule M , the trivial extension of
R by M is the ring T (R,M) = R⊕M with the usual addition and the following
multiplication: (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to
the ring of all matrices ( r m

0 r ), where r ∈ R and m ∈ M and the usual matrix
operations are used.

Corollary 3.4. (1) A ring R is RIP (right (left) idempotent reflexive) if and

only if the trivial extension T (R,R) is RIP (right (left) idempotent reflexive).
(2) A ring R is RIP (right (left) idempotent reflexive ring) if and only if

R[x]/(xn) is an RIP (right (left) idempotent reflexive) ring for any positive

integer n, where (xn) is an ideal of R[x] generated by xn.

Proof. It follows directly from Theorem 3.3 and the fact Vn(R) ∼= R[x]/(xn)
by [16]. �

Recall that an element u of a ring R is right regular if ur = 0 implies r = 0
for r ∈ R. Similarly, left regular elements can be defined. An element is regular
if it is both left and right regular (and hence not a zero divisor).

Proposition 3.5. Let M be a multiplicatively closed subset of a ring R con-

sisting of central regular elements.

(1) If M−1R is RIP, then R is RIP.

(2) Suppose that every idempotent in M−1R is of the form u−1e with e ∈
Id(R) and u ∈ M . If R is RIP, then M−1R is RIP.

Proof. (1) Suppose that M−1R is RIP. Let eRf = 0 for e, f ∈ Id(R). For any
r ∈ R with w ∈ M , 0 = w−1erf = e(w−1r)f . So we have e(M−1R)f = 0 and
so f(M−1R)e = 0, since M−1R is RIP. Thus fRe = 0, showing that R is RIP.

(2) Suppose that R is RIP. Let α(M−1R)β = 0 where α = u−1e, β = v−1f ∈
Id(M−1R) with e, f ∈ Id(R) and u, v ∈ M . Since M is contained in the center
ofR, we have 0 = (u−1e)(w−1r)(v−1f) = (uwv)−1(erf) for any w−1r ∈ M−1R,
and so eRf = 0. Since R is RIP, fRe = 0 and hence (uwv)−1(fre) = 0 for any
r ∈ R. This shows that β(M−1R)α = 0, concluding that M−1R is RIP. �

In connection with the converse of Proposition 3.5(1), it is not true that there
exist e ∈ Id(R) and u ∈ M such that α = u−1e, whenever α ∈ Id(M−1R). For
example, consider the ring R = K[x; y]/I, where K is a field and I is the ideal

of the polynomial ring K[x, y] generated by x2 − xy. We denote by p(x, y) the
image of p(x, y) ∈ K[x, y] under the natural projection K[x, y] → R. It is easy
to see that ȳ is a regular element in R. Let ∆ = {yn | n ≥ 0} ⊆ R. Then in
M−1R the element ȳ−1x̄ is an idempotent, but x is not an idempotent in R.
Note that ynx̄ is not an idempotent in R for n ≥ 0.

The ring of Laurent polynomials in x, coefficients in a ring R, consists of all
formal sums

∑n
i=k rix

i with obvious addition and multiplication, where ri ∈ R
and k, n are (possibly negative) integers with k ≤ n. We denote this ring by
R[x;x−1].
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Corollary 3.6. Let R be a ring and suppose that every idempotent in R[x;x−1]
is of the form f(x)xm for some f(x) ∈ Id(R[x]) and m ∈ Z. Then the following

conditions are equivalent:
(1) R is RIP;
(2) R[x] is RIP; and
(3) R[x;x−1] is RIP.

Proof. (1)⇔(2) comes from Theorem 3.1(1), and (2)⇔(3) follows from Propo-
sition 3.5 letting M = {1, x, x2, . . .}. �

Consider the idempotent f(x)xm in the assumption of Corollary 3.6 for the
case of m ≥ 1. Let f(x) = a0 + · · · + alx

l. Then f(x)2x2m = f(x)xm yields
f(x) = f(x)2xm, and thus a0 = 0, i.e., f(x) = a1x+ · · ·+ alx

l. Next we have
a1 = 0 by the same computation, and so we inductively obtain f(x) = 0. Thus
one may investigate the case of m ≤ −1 to find the structure of the idempotent
f(x)xm in R[x;x−1].

A ring R is called right (resp., left) Ore if given a, b ∈ R with b regular there
exist a1, b1 ∈ R with b1 regular such that ab1 = ba1 (resp., b1a = a1b). It
is a well-known fact that R is a right (resp., left) Ore ring if and only if the
classical right (resp., left) quotient ring of R exists. Suppose that there exists
the classical right quotient ring Q(R) of a ring R. If R is reflexive, then so is the
right quotient ring Q(R) by [12, Theorem 2.11], but we do not know whether
Q(R) is RIP when R is RIP. Recall that every IFP ring is RIP. However, we
have the following related fact.

Remark 3.7. Suppose that a ring R is right Ore with the classical right quotient
ring Q(R), and that R is IFP. Then we obtain that au−1Q(R)bv−1 = 0 for
au−1, bv−1 ∈ Q(R) implies aRb = 0. Let au−1Q(R)bv−1 = 0 for au−1, bv−1 ∈
Q(R). Then there exist c ∈ R and regular w ∈ R such that u−1b = cw−1 by
[19, Proposition 2.1.16]. This yields acw−1 = 0 and ac = 0. But since R is IFP,
aRc = 0 and aRu−1b = aRcw−1 = 0. Especially we obtain ab = auu−1b = 0.
This implies aRb = 0.

4. RIP rings of minimal order

Xu and Xue [22, Theorem 8] proved that a noncommutative IFP ring with
identity of minimal order is a local ring of order 16 and if R is such a ring, then
R ∼= Ri for some i ∈ {1, 2, 3, 4, 5}, where Ri’s are the rings in the following
example.

Example 4.1. We have five kinds of noncommutative finite Abelian rings with
16 elements by the help of [22, Example 7].

(1) Let R1 = GF (2)[x, y]/I, where GF (2)[x, y] is the polynomial ring over
GF (2) with non-commuting indeterminates x, y and I is the ideal ofGF (2)[x, y]
generated by x3, y3, yx, x2 − xy, y2 − xy.
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(2) Let R2 = Z4〈x, y〉/I, where Z4〈x, y〉 is the free algebra with non-commut-
ing indeterminates x, y over Z4 and I is the ideal of Z4〈x, y〉 generated by
x3, y3, yx, x2 − xy, x2 − 2, y2 − 2, 2x, 2y.

(3) Let R3 =
{(

a b
0 a2

)

| a, b ∈ GF (22)
}

.
(4) Let R4 = GF (2)[x, y]/I, where I is the ideal of GF (2)[x, y] generated

by x3, y2, yx, x2 − xy. R4 is isomorphic to D3(Z2) through the corresponding
x 7→ E12 + E23 and y 7→ E23.

(5) Let R5 = Z4〈x, y〉/I, where I is the ideal of Z4〈x, y〉 generated by
x3, y2, yx, x2 − xy, x2 − 2, 2x, 2y.

Eldridge proved that if a finite ring has a cube free factorization, then it is
commutative [6, Theorem], and that if a ring A is of order p3, p a prime, then
A ∼= U2(GF (p)) [6, Proposition]. Thus every noncommutative ring of minimal
order is isomorphic to U2(Z2). However, U2(Z2) is not RIP by Example 2.9,
and so an RIP ring of minimal order has order ≥ 16. But an RIP ring of
minimal order must have order 16, considering the semiprime ring Mat2(Z2)
and the rings of Example 4.1.

Observe that every Ri in Example 4.1 is Abelian. Hence, if R is a noncom-
mutative Abelian RIP ring of minimal order, then R is of order 16 such that
R is isomorphic to Ri for some i ∈ {1, 2, 3, 4, 5} in Example 4.1.

Moreover, Mat2(Z2) is reflexive by [12, Theorem 2.6] and hence RIP. There-
fore,

Theorem 4.2. If R is a non-Abelian RIP ring of minimal order, then R is of

order 16 and is isomorphic to Mat2(Z2).

Proof. Let R be a non-Abelian RIP ring of minimal order. Then it is true
that R cannot be local since local rings are Abelian. By the Wedderburn-Artin
theorem, R/J(R) ∼=

∑n

i=1 Matki
(Di) for some ki’s and fieldsDi’s. Here assume

that ki = 1 for all i. Then we have there cases of |J(R)| = 2, |J(R)| = 4, and
|J(R)| = 8.

If |J(R)| = 8, then R/J(R) ∼= Z2 and so R is local, a contradiction. Thus
|J(R)| = 2 or |J(R)| = 4.

Let |J(R)| = 4. Then R/J(R) ∼= Z2 ⊕ Z2. Since J(R) is nilpotent, there
exist orthogonal nonzero idempotents e1, e2 with e1 + e2 = 1 (i.e., e2 = 1− e1)
by [14, Proposition 3.7.2], and moreover we have

R = {x+ y | x ∈ Id(R), y ∈ J(R)},

where Id(R) = {0, 1, e1, e2}. Suppose that eRf = 0 for e, f ∈ Id(R). Then
e and f are orthogonal each other, say e = e1, f = e2. Let r = x + y ∈ R
with x ∈ Id(R) and y ∈ J(R). Then 0 = e1re2 = e1(x + y)e2 = e1ye2 since
e1xe2 = 0. But since R is RIP, e2Re1 = 0 and so we get e2ye1 = 0 since
e2xe1 = 0. This entails r = (e1 + e2)r(e1 + e2) = e1re1 + e2re2. Since R is
non-Abelian, there exist g ∈ {e1, e2} and s ∈ R such that gs − sg 6= 0. Note
gs− sg ∈ J(R). Since g = e1 or g = e2, we have

gs− sg = e1(gs− sg)e1 + e2(gs− sg)e2 = 0,



1970 TAI KEUN KWAK AND YANG LEE

a contradiction. The case of e = e2 and f = e1 also induces a contradiction
through a similar computation. This implies |J(R)| 6= 4.

Let |J(R)| = 2. Then R/J(R) ∼= Z2 ⊕ Z2 ⊕ Z2. Since J(R) is nilpotent,
there exist orthogonal nonzero idempotents e1, e2, e3 with e1 + e2 + e3 = 1 by
[14, Proposition 3.7.2], and moreover we have

R = {x+ y | x ∈ Id(R), y ∈ J(R)},

where Id(R) = {0, 1, e1, e2, e3, 1 − e1, 1 − e2, 1− e3}. For every r = x+ y ∈ R
with x ∈ Id(R) and y ∈ J(R), we have eirej = eiyej for i 6= j since eixej = 0.
If eiyej 6= 0, then J(R) = {0, eiyej}. Thus ejJ(R)ei = 0, and so ejRei = 0
since ejId(R)ei = 0. But since R is RIP, we get eiRej = 0 and this yields
eiyej = 0, a contradiction. Therefore we can conclude that

eiRej = 0 for all i, j with i 6= j.

Now suppose that eRf = 0 for e, f ∈ Id(R). Then e and f are orthogonal each
other, say e = e1 and f = e2. But since R is RIP, e2Re1 = 0 and so we get
e2ye1 = 0 since e2xe1 = 0. This entails

r = (e1 + e2 + e3)r(e1 + e2 + e3) = e1re1 + e2re2 + e3re3.

Since R is non-Abelian, ek is non-central for some k ∈ {1, 2, 3}. If e1 is non-
central, then there exists s ∈ R such that e1s−se1 6= 0. Note e1s−se1 ∈ J(R).
Then we have

e1s− se1 = (e1 + e2 + e3)(e1s− se1)(e1 + e2 + e3)

= e1(e1s− se1)e1 + e2(e1s− se1)e2 + e3(e1s− se1)e3 = 0,

a contradiction. Each case of (e2 is non-central) and (e3 is non-central) also
induces a contradiction through a similar computation. The computations for
other cases of e and f are also similar, inducing contradictions.

Thus we must have ki ≥ 2 for some i. But R is of order 16 and hence we
have R/J(R) ∼= Mat2(Z2) and J(R) = 0. This implies R ∼= Mat2(Z2). �

Observe that Matn(Z2) is semiprime and so we get the following by Theorem
4.2.

Corollary 4.3. Let R be a ring. Then R is a non-Abelian RIP ring of minimal

order if and only if R is a non-Abelian semiprime ring of minimal order if and

only if R is a non-Abelian reflexive ring of minimal order if and only if R is a

non-Abelian right idempotent reflexive ring of minimal order if and only if R

is a non-Abelian left idempotent reflexive ring of minimal order .

Recall that an IFP ring with identity is Abelian, but the following example
shows that this is no longer valid for the case of rings without identity.

Example 4.4. The rings R1 =
(

GF (p) GF (p)
0 0

)

and R2 =
(

GF (p) 0
GF (p) 0

)

are min-

imal noncommutative IFP rings without identity by [22, p. 71] which have 4
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elements, respectively. Notice that they are not Abelian by a simple computa-
tion. We will show that Ri’s are RIP rings.

The set of all nonzero idempotents in R1 is E = {( 1 d
0 0 ) | d ∈ GF (p)}. Sup-

pose eR1a = 0 for e ∈ E and a ∈ R. Then a = 0 since eR1 = R1, obtaining
aR1e = 0. So R1 is left idempotent reflexive, and hence R1 is RIP.

The set of all nonzero idempotents in R2 is E = {( 1 0
d 0 ) | d ∈ GF (p)}. By a

similar computation to above, we can show that R2 is right idempotent reflexive
and so R2 is RIP.

Lemma 4.5 ([13, Lemma 2.7]). Let R be a ring and N be a nil ideal of R. If

|N | = 4, then N is a commutative ring with N3 = 0.

Theorem 4.6. Let R be a ring without identity. If R is a non-Abelian RIP

ring of minimal order, then R is isomorphic to
(

Z2 Z2

0 0

)

or
(

Z2 0
Z2 0

)

.

Proof. Let R be a non-Abelian RIP ring of minimal order. Then |R| = 4 by
the existence of the non-Abelian RIP ring

(

Z2 Z2

0 0

)

as in Example 4.4. If R is
nilpotent then R is commutative by Lemma 4.5, a contradiction. If |J(R)| = 0,
then R is also commutative by the proof of [11, Theorem 1.15], a contradiction.
Thus we have the result of |J(R)| = 2, whence we also follow the proof [11,

Theorem 1.15] to conclude that R is isomorphic to
(

Z2 Z2

0 0

)

or
(

Z2 0
Z2 0

)

. �

Hence, we have the following by Theorem 4.6.

Corollary 4.7. Let R be a ring without identity. Then R is a noncommutative

RIP ring of minimal order if and only if R is a noncommutative IFP ring of

minimal order.
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