• Title/Summary/Keyword: polynomial networks

Search Result 235, Processing Time 0.019 seconds

Derivation of Zeros from Externally-loaded Feed-forward Element of Filter Network

  • Um, Keehong;Yoo, Sooyeup;Pinthong, Chairat
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.1
    • /
    • pp.9-12
    • /
    • 2014
  • We present a mathematical method for calculation of transmission zero locations, determining a filtering characteristics of two-port systems. By adjusting element values based on the zero locations, the frequency-selectivity is characterized. The characteristic polynomial of ladder networks in externally-loaded feed-forward systems is considered by adopting chain matrices for subsystems. This method can be extended to other types of lumped systems with cross-coupled sections. We find out the zeros by solving characteristics polynomials of closed-form expressions in terms of Laplace impedances of elements. The pairs of complex zeros are shown to be solely from the cross-coupled portion of the system.

Stock-Index Prediction using Fuzzy System and Knowledge Information (퍼지시스템과 지식정보를 이용한 주가지수 예측)

  • Kim, Hae-Gyun;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2030-2032
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting. The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. Results show that both networks can be trained to predict the index. And the fuzzy system is performing slightly better than DPNN and MLP.

  • PDF

Design of Modeling & Simulator for ASP Realized with the Aid of Polynomiai Radial Basis Function Neural Networks (다항식 방사형기저함수 신경회로망을 이용한 ASP 모델링 및 시뮬레이터 설계)

  • Kim, Hyun-Ki;Lee, Seung-Joo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.554-561
    • /
    • 2013
  • In this paper, we introduce a modeling and a process simulator developed with the aid of pRBFNNs for activated sludge process in the sewage treatment system. Activated sludge process(ASP) of sewage treatment system facilities is a process that handles biological treatment reaction and is a very complex system with non-linear characteristics. In this paper, we carry out modeling by using essential ASP factors such as water effluent quality, the manipulated value of various pumps, and water inflow quality, and so on. Intelligent algorithms used for constructing process simulator are developed by considering multi-output polynomial radial basis function Neural Networks(pRBFNNs) as well as Fuzzy C-Means clustering and Particle Swarm Optimization. Here, the apexes of the antecedent gaussian functions of fuzzy rules are decided by C-means clustering algorithm and the apexes of the consequent part of fuzzy rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The coefficients of the consequent polynomial of fuzzy rules and performance index are considered by the Least Square Estimation and Mean Squared Error. The descriptions of developed process simulator architecture and ensuing operation method are handled.

Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm (공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석)

  • Oh, Sung-Kwun;Kim, Wook-Dong;Park, Ho-Sung;Lee, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • In this paper, we proposed Interval Type-2 polynomial Radial Basis Function Neural Networks. In the receptive filed of hidden layer, Interval Type-2 fuzzy set is used. The characteristic of Interval Type-2 fuzzy set has Footprint Of Uncertainly(FOU), which denotes a certain level of robustness in the presence of un-known information when compared with the type-1 fuzzy set. In order to improve the performance of proposed model, we used the linear polynomial function as connection weight of network. The parameters such as center values of receptive field, constant deviation, and connection weight between hidden layer and output layer are optimized by Conjugate Gradient Method(CGM) and Space Search Evolutionary Algorithm(SSEA). The proposed model is applied to gas furnace dataset and its result are compared with those reported in the previous studies.

Modified Transformation and Evaluation for High Concentration Ozone Predictions (고농도 오존 예측을 위한 향상된 변환 기법과 예측 성능 평가)

  • Cheon, Seong-Pyo;Kim, Sung-Shin;Lee, Chong-Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.435-442
    • /
    • 2007
  • To reduce damage from high concentration ozone in the air, we have researched how to predict high concentration ozone before it occurs. High concentration ozone is a rare event and its reaction mechanism has nonlinearities and complexities. In this paper, we have tried to apply and consider as many methods as we could. We clustered the data using the fuzzy c-mean method and took a rejection sampling to fill in the missing and abnormal data. Next, correlations of the input component and output ozone concentration were calculated to transform more correlated components by modified log transformation. Then, we made the prediction models using Dynamic Polynomial Neural Networks. To select the optimal model, we adopted a minimum bias criterion. Finally, to evaluate suggested models, we compared the two models. One model was trained and tested by the transformed data and the other was not. We concluded that the modified transformation effected good to ideal performance In some evaluations. In particular, the data were related to seasonal characteristics or its variation trends.

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Design of Optimized Pattern Recognizer by Means of Fuzzy Neural Networks Based on Individual Input Space (개별 입력 공간 기반 퍼지 뉴럴 네트워크에 의한 최적화된 패턴 인식기 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Kim, Byun-Gon;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.181-189
    • /
    • 2013
  • In this paper, we introduce the fuzzy neural network based on the individual input space to design the pattern recognizer. The proposed networks configure the network by individually dividing each input space. The premise part of the networks is independently composed of the fuzzy partition of individual input spaces and the consequence part of the networks is represented by polynomial functions. The learning of fuzzy neural networks is realized by adjusting connection weights of the neurons in the consequent part of the fuzzy rules and it follows a back-propagation algorithm. In addition, in order to optimize the parameters of the proposed network, we use real-coded genetic algorithms. Finally, we design the optimized pattern recognizer using the experimental data for pattern recognition.

Successive Max-min Connection-Ratio Preoblem:Routing with Fairness and Efficiency in Circuit Telecommunication Networks (연속적인 최대-최소 연결비율 문제: 회선망에서의 공정성 및 효율성을 보장하는 경로설정)

  • 박구현;우재현
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.13-29
    • /
    • 1997
  • This paper considers a new routing problem, successive max-min connection ratio problem (SMCRP), arised in circuit telecommunication networks such as SONET and WDM optical transport network. An optimization model for SMCRP is established based on link-flow formulation. It's first optimization process is an integral version of maximum concurrent flow problem. Integer condition does not give the same connection-ratio of each node-pair at an optimal solution any more. It is also an integral multi-commodity flow problem with fairness restriction. In order to guarantee fairness to every node-pair the minimum of connection ratios to demand is maximized. NP- hardness of SMCRP is proved and a heuristic algorithm with polynomial-time bound is developed for the problem. Augmenting path and rerouting flow are used for the algorithm. The heuristic algorithm is implemented and tested for networks of different sizes. The results are compared with those given by GAMS/OSL, a popular commercial solver for integer programming problem.n among ferrite-pearlite matrix, the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 70%, distribution range of fatigue.ife was small in same stress level. (2) $\sqrt{area}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of $\sqrt{area}_{max}$ may be used as a guideline for the control of inclusion size in the steelmaking.

  • PDF

Tracking Detection using Information Granulation-based Fuzzy Radial Basis Function Neural Networks (정보입자기반 퍼지 RBF 뉴럴 네트워크를 이용한 트랙킹 검출)

  • Choi, Jeoung-Nae;Kim, Young-Il;Oh, Sung-Kwun;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2520-2528
    • /
    • 2009
  • In this paper, we proposed tracking detection methodology using information granulation-based fuzzy radial basis function neural networks (IG-FRBFNN). According to IEC 60112, tracking device is manufactured and utilized for experiment. We consider 12 features that can be used to decide whether tracking phenomenon happened or not. These features are considered by signal processing methods such as filtering, Fast Fourier Transform(FFT) and Wavelet. Such some effective features are used as the inputs of the IG-FRBFNN, the tracking phenomenon is confirmed by using the IG-FRBFNN. The learning of the premise and the consequent part of rules in the IG-FRBFNN is carried out by Fuzzy C-Means (FCM) clustering algorithm and weighted least squares method (WLSE), respectively. Also, Hierarchical Fair Competition-based Parallel Genetic Algorithm (HFC-PGA) is exploited to optimize the IG-FRBFNN. Effective features to be selected and the number of fuzzy rules, the order of polynomial of fuzzy rules, the fuzzification coefficient used in FCM are optimized by the HFC-PGA. Tracking inference engine is implemented by using the LabVIEW and loaded into embedded system. We show the superb performance and feasibility of the tracking detection system through some experiments.

Spectrum Leasing and Cooperative Resource Allocation in Cognitive OFDMA Networks

  • Tao, Meixia;Liu, Yuan
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2013
  • This paper considers a cooperative orthogonal frequency division multiple access (OFDMA)-based cognitive radio network where the primary system leases some of its subchannels to the secondary system for a fraction of time in exchange for the secondary users (SUs) assisting the transmission of primary users (PUs) as relays. Our aim is to determine the cooperation strategies among the primary and secondary systems so as to maximize the sum-rate of SUs while maintaining quality-of-service (QoS) requirements of PUs. We formulate a joint optimization problem of PU transmission mode selection, SU (or relay) selection, subcarrier assignment, power control, and time allocation. By applying dual method, this mixed integer programming problem is decomposed into parallel per-subcarrier subproblems, with each determining the cooperation strategy between one PU and one SU. We show that, on each leased subcarrier, the optimal strategy is to let a SU exclusively act as a relay or transmit for itself. This result is fundamentally different from the conventional spectrum leasing in single-channel systems where a SU must transmit a fraction of time for itself if it helps the PU's transmission. We then propose a subgradient-based algorithm to find the asymptotically optimal solution to the primal problem in polynomial time. Simulation results demonstrate that the proposed algorithm can significantly enhance the network performance.