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Abstract 

We present a mathematical method for calculation of transmission zero locations, determining a filtering 

characteristics of two-port systems. By adjusting element values based on the zero locations, the 

frequency-selectivity is characterized. The characteristic polynomial of ladder networks in externally-loaded 

feed-forward systems is considered by adopting chain matrices for subsystems. This method can be extended to 

other types of lumped systems with cross-coupled sections. We find out the zeros by solving characteristics 

polynomials of closed-form expressions in terms of Laplace impedances of elements. The pairs of complex 

zeros are shown to be solely from the cross-coupled portion of the system.  
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1. Introduction 

Transmission zeros (TZs) from the cross-coupled (CC) systems are derived from an initially-synthesized 

ladder system with externally-loaded feed forward elements. By adding a feed forward CC bridge to the to 

the ladder systems an integer pair of TZs can be produced in a complex s-plane. The transfer function of 

passive networks of R’s and C’s with a cross-coupled section was derived to discuss complex and real zeros. 

We demonstrate in this paper the finite-frequency complex pairs of TZs are produced solely from the CC 

portion of the circuit. 

 

2. ABCD matrices 

A low-pass filter is a filter that passes low-frequency signals and reduces the amplitude of signals with 

frequencies higher than the cutoff frequency. The actual amount of attenuation for each frequency varies 

IJIBC 14-1-3 

13-2-2xx-x-x 

Manuscript Received: Nov. 20, 2013 / Revised: Dec. 29, 2014 / Accepted: Feb.14, 2014 

Corresponding Author: um@hansei.ac.kr 

Tel: +82-31-450-5308, Fax: +82-31-450-5172 

Dept. of Information Technology, Hansei University, Korea 



10                             International Journal of Internet, Broadcasting and Communication Vol.6 No.1 9-12(2014) 

 

depending on specific element values 
[1]

. We consider the frequency transfer function of a low-pass filter. 

The complex zeros due to the cross-couples in the form of feed-forward are determined from the numerator 

polynomial of the transfer function. The ABCD matrix T of n cascaded filter networks is given by, 
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where iT  is the matrix of the i-th system[2, 3]. The entry A of Eq. (1) is given by the element (1,1) of chain 

matrix T , obtained by open-circuiting the output port, i.e., A is found by applying a voltage iV  at port 1, 

and measuring the open-circuit voltage 
oV  at port 2. The voltage transfer function )(sH can thus be expressed 

as with )(sN and )(sD are the numerator and the denominator polynomials of )(sH
[4]

. 
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In Eq. (2), the entry (1, 1) is known be obtained from the transfer function. The canonical form of the 

numerator polynomial is defined as the characteristic polynomial of the TZs. Equating the polynomial to 

zero, the transmission zero characteristic equation (TZCE) is obtained, which is to be solved to find out TZs. 

We define positively cross-coupled (PCC) network: a network where the sign of the cross-coupling is the 

same as the sign of the main line coupling (i.e., inductive cross-coupling in an inductively coupled circuit or 

capacitive cross-coupling in an capacitively coupled circuit).  

 

3. Ladder networks 

In Fig. 1, a ladder network consists of cascaded asymmetrical L-sections (unbalanced) or C-sections 

(balanced). In low pass form the topology would consist of series inductors and shunt capacitors. Other band 

forms would have an equally simple topology transformed from the low pass topology. The transformed  
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Figure 1.  Ladder network  

 
network will have shunt admittances that are dual networks of the series impedances if they were duals in the 

starting network, which is the case with series inductors and shunt capacitors 
[5]

. An initially-synthesized 

ladder network, with shunt- connected LC resonators without any cross-coupling element, is a building block 

in the design of a cross-coupled system. Each LC resonator has impedances of L and C in parallel. The 

series- connected elements could be inductors or capacitors. There are several possibilities for adding 

cross-coupling elements to the circuit: skipping one resonator of tank. A string of many impedances 

connected between two reference voltages is an impedance string ladder network. The impedances act as 

voltage dividers between the referenced voltages. Each tap of the string generates a different voltage which 

can be compared with another voltage. 

 

4. Pi section topology 

The pi network is a specific type of attenuator circuit in electronics whereby the topology the circuit is 
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formed in the shape of Π. Electronic attenuators are used in order to reduce the level of a signal. Attenuators 

have a flat frequency response attenuating all frequencies equally in the band they are intended to operate. 

The attenuator has the opposite task of an amplifier. The topology of an attenuator circuit will usually follow 

one of the filter system. However, there is no need for more complex circuitry, as there is with filter, due to 

the simplicity of the frequency response required. Fig. 2 shows a prototype of pi network expressed in terms 

of impedances.  

Zi1 Zi2

Zi3

 

Figure 2 . Pi network 

 
In Fig. 2, the i-th network is composed of impedances 2i1i z,z  and ,z 3i  which is a π-network. The 

impedance 1iz  is a network of parallel connection of 1iL  and 1iC , and shunt-connected. 2iz  is a network 

of parallel connection of 2iL and 2iC ,and shunt-connected. 3iz is just an impedance of single inductor, 3iL . 

The chain matrix, iT , is given by 
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In Eq.(3), the four entries of are expressed as [6],  
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In these equations of Eq. (4), each impedance of the matrix entries is expressed in terms of Laplace 

impedances as  
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,              (5)  

In Eq.(5), the Laplace impedances are used to obtain matrix. The i-th subsystem is a  -network used in the 

procedure of getting the chain matrix. The source voltage is operated with a microwave system [7].   

 

5. Real system with one tank cross-coupled 

An inductor-capacitor circuit (LC circuit) is an electrical circuit composed of inductors and capacitors. A 

second order LC circuit is composed of one inductor and one capacitor and is the simplest type of LC circuit. 

A second order LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, consists of one 

inductor and one capacitor. The circuit can act as an electrical resonator, an electrical analogue of a tuning 

fork, storing energy oscillating at the circuit's resonant frequency. LC circuits are used either for generating 

signals at a particular frequency, or picking out a signal at a particular frequency from a more complex signal. 

They are key components in many electronic devices, particularly radio equipment, used in circuits such as 

oscillators, filters, and frequency mixers. In Fig. 3, a real system cross-coupled with one tank is shown. The 

transfer function can be derived from Eqs. (1)-(5). After cancellations of the common terms of poles and 
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Figure 3.  Negatively cross-coupled (NCC) filter network without  

skipping any resonators. 

 
numerator and denominator polynomials, the canonical form of the numerator polynomial, i.e., TZCE in the 

transfer function in is obtained as a 3rd degree polynomial, namely 
 

]1[50)( 2
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Equating to zero, i.e., N(s) = 0, the TZCE of the network shown in Fig. 3 is expressed as a product of two 

functions 
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This tells a single zero is always located at the origin of complex plane. 
 

6. Conclusions 
We have presented a theoretical investigation of a practical method to calculate the quadratic characteristic 

polynomial in externally-loaded Feed-forward Systems. It was possible for us to determine quantitatively the 

locations of complex transmission zeros (TZs) of positively cross-coupled systems. Solving, the location of 

the zeros are found out. 
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