• Title/Summary/Keyword: polymorphic

Search Result 1,369, Processing Time 0.028 seconds

Variation Analysis of Long-term in vitro Cultured Cymbidium goeringii Lindley and Cymbidium kanran Makino (장기간 기내 배양한 춘란(Cymbidium goeringii Lindley) 및 한란(Cymbidium kanran Makino)의 변이 비교)

  • Ryu, Jai-Hyunk;Lee, Hyo-Yeon;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.139-149
    • /
    • 2011
  • RAPD (random amplified polymorphic DNA) analysis was examined to detect variation of in vitro cultured 30 rhizomes of Cymbidium goeringii Lindley and Cymbidium kanran Makino, with long-term (8 years) subculture, respectively. Out of 151 DNA bands detected, the 40 were polymorphic with a polymorphic rate 26.4% in the C. goeringii. Out of 155 DNA bands detected, the 56 were polymorphic with a polymorphic rate 36.1% in the C. kanran. Genetic similarity matrix (GSM) shows from 0.825 to 1.00 with an average of 0.944 in the rhizomes of C. goeringii and 0.812 to 1.00 with an average of 0.913 in the C. kanran. According to the clustering analysis, C. goeringii was divided into 1 group and 2 independent individuals and its structure of clustering was simple than that of C. kanran. The higher polymorphism and the decreased GSM were showed in the long-term in vitro cultured C. goeringii and C. kanran supplemented with growth regulators. The results provide as fundamental data to develop a new materials for plant breeding and resources plant.

Genetic Diversity and Relationship of Genus Spiraea by Random Amplified Polymorphic DNA Markers (조팝나무속 분류군의 RAPD에 의한 유전적 다양성과 관련성)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.983-990
    • /
    • 2010
  • Genus Spiraea is a woody species primarily distributed throughout Asia. Many species of this genus are important plants medicinally and ecologically. I evaluated a representative sample of the sixteen taxa with random amplified polymorphic DNA (RAPD) markers to estimate genetic relationships within genus Spiraea. In addition, RAPD analysis was also conducted to estimate the genetic diversity and population structure of these species. As the typical populations of Spiraea were small, isolated, and patchily distributed for natural populations, they maintained a low level of genetic diversity for polymorphic primers. The mean H was 0.117 across species. The Korean endemic species (S. chartacea) and patchily distributed species (S. betulifolia) showed fewer alleles per locus (mean 1.240 vs. 1.297), lower percent polymorphic locus (24.0 vs. 29.7), and lower diversity (0.092 vs. 0.121) than a relatively widely spread species. An assessment of the proportion of diversity present within species, $H_{POP}/H_{SP}$, indicated that about 87.8% the total genetic diversity was among species. Thus, the majority of genetic variation (87.8%) resided within species. The phylogenic tree showed three distinct groups. One clade includes S. prunifolia for. simpliciflora, S. thunbergii, S. chamaedryfolia var. ulmifolia, S. media, and S. cantoniensis. Another clade includes S. blumei, S. pubescens, S. chartacea, and S. chinensis. The other clade is the remaining seven species.

Genetic Diversity of Rehmannia glutinosa Genotypes Assessed by Molecular Markers (분자표지자에 의한 지황 유전집단의 유전적 다양성)

  • Bang, Kyong-Hwan;Chung, Jong-Wook;Kim, Young-Chang;Lee, Jei-Wan;Kim, Hong-Sig;Kim, Dong-Hwi
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.435-440
    • /
    • 2008
  • Random amplified polymorphic DNA (RAPD) markers were used to identify the genetic diversities among and within varieties and landraces of Rehmannia glutinosa. Polymorphic and reproducible bands were produced by 10 primers out of total 20 primers used in the experiment. In RAPD analysis of the 11 genotypes, 64 fragments out of 73 amplified genomic DNA fragments were polymorphic which represented an average 6.4 polymorphic fragments per primer. Number of amplified fragments with random primers ranged from 2 (OPA-1) to 13 (OPA-11) and varied in size from 200 bp to 1,400 bp. Especially, OPA-10, OPA-11 and OPA-19 primers showed specific bands for varieties of Korea Jiwhang and Jiwhang il ho, which could be useful for discriminating from other varieties and landraces of R. glutinosa. Percentage polymorphism ranged from a minimum of 50% (OPA-1) to a maximum of 100% (OPA-11), with an average of 87.7%. Similarity coefficients were higher in the genotypes of Korea Jiwhang and Jiwhang il ho than in other populations. In cluster analysis, genotypes of Korea Jiwhang, Jiwhang il ho, and Japanese accession were separated from those of other varieties and landraces. Average of genetic diversity within the population $(H_S)$ was 0.110, while average of total genetic diversity $(H_T)$ was 0.229. Across all RAPD makers the $G_{ST}$ value was 0.517, indicating that about 52% of the total genetic variation could be explained by RAPDs differences while the remaining 48% might be attributable to differences among samples. Consequently, RAPD analysis was useful method to discriminate different populations such as domestic varieties and other landraces. The results of the present study will be used to understand the population and evolutionary genetics of R. gllutinosa.

Sequence and Genetic Variation of Mitochondrial DNA D-loop Region in Korean Cattle (한우 Mitochondrial DNA D-loop 영역의 염기서열 및 유전변이)

  • Chung, E.R.;Kim, W.T.;Kim, Y.S.;Lee, J.K.;Han, S.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.181-190
    • /
    • 2002
  • This study was performed to determine sequences of the mt DNA D-loop region, including $tRNA^{Pro}$ and $tRNA^{Pre}$ and to analysis sequence variation polymorphism in Korean cattle. The resulting sequencies were compared with previously published sequences for other cattle breeds(GenBank J01394). The PCR was used to amplify an 1142bp between nucleotides 15061 and 404 within the D-loop region of mt DNA using specific primers. Korean cattle showed 24 polymorphic sites by nucleotide substitutions and insertions of single base pairs. About 50% of polymorphic sites were found in positions 16042 to 16122 with the most variable region. Among these polymorphic sites, variations at 16055, 16230 and 16260 bp were detected as new sequence variants in Korean cattle. These specific polymorphic sites have not been reported in the Japanese black cattle and European cattle. Therefore, mt DNA variants in the D-loop region may be used as genetic markers for specifying Korean cattle. The frequencies of positions 169, 16302, 16093, 16042, 16119 with a high level of sequence polymorphism were 0.81, 0.56, 0.56, 0.50 and 0.43, respectively. In comparison of genetic distances, Korean cattle showed the more closely to European cattle as Bos taurus than Bos indicus such as African and India breeds. In conclusion, these mt DNA sequence polymorphisms in the D-loop region for Korean cattle may be useful for the analysis of cytoplasmic genetic variation and associations with economic important traits and genetic analysis of maternal lineage.