Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.7.983

Genetic Diversity and Relationship of Genus Spiraea by Random Amplified Polymorphic DNA Markers  

Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
Publication Information
Journal of Life Science / v.20, no.7, 2010 , pp. 983-990 More about this Journal
Abstract
Genus Spiraea is a woody species primarily distributed throughout Asia. Many species of this genus are important plants medicinally and ecologically. I evaluated a representative sample of the sixteen taxa with random amplified polymorphic DNA (RAPD) markers to estimate genetic relationships within genus Spiraea. In addition, RAPD analysis was also conducted to estimate the genetic diversity and population structure of these species. As the typical populations of Spiraea were small, isolated, and patchily distributed for natural populations, they maintained a low level of genetic diversity for polymorphic primers. The mean H was 0.117 across species. The Korean endemic species (S. chartacea) and patchily distributed species (S. betulifolia) showed fewer alleles per locus (mean 1.240 vs. 1.297), lower percent polymorphic locus (24.0 vs. 29.7), and lower diversity (0.092 vs. 0.121) than a relatively widely spread species. An assessment of the proportion of diversity present within species, $H_{POP}/H_{SP}$, indicated that about 87.8% the total genetic diversity was among species. Thus, the majority of genetic variation (87.8%) resided within species. The phylogenic tree showed three distinct groups. One clade includes S. prunifolia for. simpliciflora, S. thunbergii, S. chamaedryfolia var. ulmifolia, S. media, and S. cantoniensis. Another clade includes S. blumei, S. pubescens, S. chartacea, and S. chinensis. The other clade is the remaining seven species.
Keywords
Genus Spiraea; genetic diversity; RAPD; phylogenic tree;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu, T. T. and L. T. Yu. 1974. Spiraea, pp. 1-36, In Yu, T. T. (ed.), Flora reipublic popularis sinicae. Angiospermae dicotyledonae. Science Press, Beijing.
2 Zhang, Z. Y., L. M. Fan, J. B. Yang, X. J. Hao, and Z. J. Gu. 2006. Alkaloid polymorphism and ITS sequence variation in the Spiraea japonica complex (Rosaceae) in China: tracts of the biological effects of the Himalaya-Tibet Plateau uplift. Am. J. Bot. 93, 762-769.   DOI
3 Zhang, Z.Y., H. Sun, and Z. J. Gu. 2002. Karyomorphological study of the Spiraea japonica complex (Rosaceae). Brittonia 54, 168-174.   DOI
4 Sawalha, K., H. Eideh, S. Laham, H. Hasasneh, and B. Mezeid. 2008. Genetic diversity studies on wheat landraces in Palestine using RAPD markers in comparison to phenotypic classification. J. Appl. Biol. Sci. 2, 29-34.
5 Thawaro, S. and S. Te-chato. 2008. RAPD (random amplified polymorphic DNA) marker as a tool for hybrid oil palm verification from half mature zygotic embryo culture. J. Agricult. Techno. l4, 165-176.
6 Woo, M.H., E. H. Lee, O. Chung, and C. W. Kim. 1996. Constituents of Spiraea prunifolia var. simpliciflora. Nat. Prod. Sci. 27, 389-396.
7 Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420.   DOI
8 Potter, D., S. M. Still, T. Grebenc, D. Ballian, G. Bozic, J. Franjiae, and H. Kraigher. 2007. Phylogenetic relationships in tribe Spiraceae (Rosaceae) inferred from nucleotide sequence data. Pl. Syst. Evol. 266, 105-118.   DOI
9 Yeh, F. C., R. C. Yang, T. J. Botle, Z. H. Ye, and J. X. Mao. 1997. POPGENE, the user friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada.
10 Paul, S. P., F. N. Wachira, W. Powell, and R. Waugh. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camelliasinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94, 255-263.   DOI
11 Rashed, M. A., M. H. Abou-Deif, M. A. A. Sallam, and W. A. Ramadan. 2008. Estimation of genetic diversity among thirty bread wheat varieties by RAPD analysis. J. Appl. Sci. Res. 4, 1898-1905.
12 Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70, 3321-3.   DOI
13 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
14 Kim, T. J. and B. Y. Sun. 1996. Taxonomy of the genus Spiraea in Korea. Kor. J. Plant Tax. 26, 191-212.
15 Lee, Y. N. 2007. New Flora of Korea. pp. 522-527, Kyo-Hak Publishing Co., Seoul, Korea.
16 Nei, M. and W. H. Li. 1979. Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 74, 5267-5273.
17 Barrett, S. C. H., C. G. Eckert, and B. C. Husband. 1993. Evolutionary processes in aquatic plant populations. Aquatic Botany 44, 105-145.   DOI
18 Felsenstein, J. 1989. PHYLIP (Phylogeny Inference Package) version 3.2. Cladistics 5, 164-166.
19 Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 43-63, In Brown, A. H. D., M. T. Clegg, A. L. Kahler, and B. S. Weir (eds.), Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, MA.
20 Hamrick, J. L. and M. J. W. Godt. 1996. Effects of life history traits on genetic diversity in plant species, Philoso. Trans. Royal Soc. London Series B 351, 1291-1298.   DOI
21 Bowman, K. D., K. Hutcheson, E. P. Odum, and L. R. Shenton. 1971. Comments on the distribution of indices of diversity. Stat. Ecol. 3, 315-359.
22 Bussell, L. D. 1999. The distribution of random amplified polymorphic DNA (RAPD) diversity among populations of Isotomapetraea (Lobeliaceae). Mol. Ecol. 8, 775-789.   DOI
23 Collard, B. C. Y. and D. J. Mackill. 2009. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27, 86-93.   DOI