DOI QR코드

DOI QR Code

Variation Analysis of Long-term in vitro Cultured Cymbidium goeringii Lindley and Cymbidium kanran Makino

장기간 기내 배양한 춘란(Cymbidium goeringii Lindley) 및 한란(Cymbidium kanran Makino)의 변이 비교

  • Ryu, Jai-Hyunk (Department of Bioresources Science, Sunchon National University) ;
  • Lee, Hyo-Yeon (Faculty of Biotechnology, Jeju National University) ;
  • Bae, Chang-Hyu (Department of Bioresources Science, Sunchon National University)
  • Received : 2010.01.27
  • Accepted : 2010.12.23
  • Published : 2011.04.30

Abstract

RAPD (random amplified polymorphic DNA) analysis was examined to detect variation of in vitro cultured 30 rhizomes of Cymbidium goeringii Lindley and Cymbidium kanran Makino, with long-term (8 years) subculture, respectively. Out of 151 DNA bands detected, the 40 were polymorphic with a polymorphic rate 26.4% in the C. goeringii. Out of 155 DNA bands detected, the 56 were polymorphic with a polymorphic rate 36.1% in the C. kanran. Genetic similarity matrix (GSM) shows from 0.825 to 1.00 with an average of 0.944 in the rhizomes of C. goeringii and 0.812 to 1.00 with an average of 0.913 in the C. kanran. According to the clustering analysis, C. goeringii was divided into 1 group and 2 independent individuals and its structure of clustering was simple than that of C. kanran. The higher polymorphism and the decreased GSM were showed in the long-term in vitro cultured C. goeringii and C. kanran supplemented with growth regulators. The results provide as fundamental data to develop a new materials for plant breeding and resources plant.

기내 배양된 Cymbidium속 춘란과 한란의 근경을 대상으로 장기배양에 따른 변이성을 비교하기 위하여 RAPD 분석을 실시하였다. 춘란은 총 151개 DNA 밴드 중 40개의 다형성 밴드가 증폭되어 다형성 비율은 26.4%였으며, 한란은 총 155개 밴드 중 56개의 다형성 밴드가 증폭되어 36.1%의 다형성 비율을 나타내었다. 단순일치 계수(simple-matching coefficient)를 사용하여 유전적 유사도 지수를 분석한 결과, 춘란의 개체간의 유전적 유사도 지수는 0.825~1.00 사이로 평균 0.944였다. 한란의 개체간 유전적 유사도 지수는 0.812~1.00 사이로 평균 0.913이었다. 군집분석결과 춘란은 유전적 유사도 지수 0.841과 0.837에서 1개의 그룹과 유집되지 않는 2개체로 나누어졌으며 한란보다 단순하게 유집되었다. 이와 같이 생장조절제가 첨가된 기내 배지에서 장기간 배양된 Cymbidium 근경은 유전적 다형성을 나타냈으며, 유전적 유사지수도 다소 낮게 나타났다. 이 결과는 추후 여러 가지 변이원을 이용한 자원식물개발과 품종육성의 기초자료로 활용될 것으로 기대된다.

Keywords

References

  1. Arditti, J. 1992. Classification and naming of orchids. Fundamentals of Orchid Biology. John Wiley and Sons Press, New York, USA. pp. 55-101.
  2. Bae, C.H., T. Abe, J.I. Lyu, S. Gensaram, Y.H. Shin, H.Y. Lee and S. Yoshida, 2003. Characteristics of plant organism irradiated with heavy-ion beam. Proceed. J. Kor. Plant Biotech. p. 126 (in Korean).
  3. Bang, J.W., J.H. Park and E.Y. Choi. 1994. Chromosome variation in callus cells derived from different cytogenetic type plants of Scilla scillodes Complex. Kor. J. Plant Tissue Cult. 21:59-63 (in Korean).
  4. Broertjes, C. and A.M. Van Harten. 1988. Applied mutation for vegetatively propagated crops. Elsevier Science Publisher, Amsterdam, Netherlands. pp. 225-285.
  5. Brown, P.T.H. 1989. DNA methylation in plants and its role in tissue culture. Genome 31:717-729. https://doi.org/10.1139/g89-130
  6. Choi, S.H. 2001. Phylogenetic analysis of oriental Cymbidium. Department of Horticulture, Ph.D. Thesis, Seoul Women's Univ. pp. 31-43.
  7. Choi, J.Y., I.S. So, C.H. Pak and B.H. Kwack. 1998. Randomly amplified polymorphic DNA (RAPD) analysis on compatibility of Korean native Cymbidium goeringii with other Cymbidium species. J. Kor. Soc. Hort. Sci. 16:361-363 (in Korean).
  8. Chung, J.D., C.K. Chun, S.S. Kim and J.S. Lee 1985. Factors affecting growth of rhizome and organogenesis of Korea native Cymbidium kanran. J. Kor. Soc. Hort. Sci. 26:281-288 (in Korean).
  9. Chung, S.Y. 2003. Molecular phylogenetical relationship of Paphiopedilum and Phragmipedium. Department of Horticulture, Ph.D. Thesis, Seoul Women's Univ. pp. 25-38 (in Korean).
  10. De Melo Ferreira, W., G.B. Kerbauy and A.P.P. Costa. 2006. Micropropagation and Genetic Stability of a Dendrobium Hybrid (Orchidaceae). in vitro Cell. Dev. Bio. Plant 42(6):568-571. https://doi.org/10.1079/IVP2006820
  11. DeVerno, L.L., Y.S. Park, J.M. Bonga and J.M. Barrett. 1999. Somaclonal variation in cryopreserved embryogenic clone of white spruce (Picea glauca Voss). Plant Cell Rep. 18:948-953. https://doi.org/10.1007/s002990050689
  12. Evans, DA. 1989. Somaclonal variation : Genetic basis and breeding application. Trends in Genet. 5:46-50. https://doi.org/10.1016/0168-9525(89)90021-8
  13. Fnag, G., S. Hammar and R. Grumet, 1992. A quick inexpensive method of removing ploysaccharides from plant genomic DNA. Biotechniques 13:52-55.
  14. Garay, L.A. and H.R. Sweet. 1974. Natural and artificial hybrid genetic names of orchid. In C.L. Withner (eds.). The Orchids. Jhon Wiley and Son Press, New York, USA. pp. 485-561.
  15. Goto, S.R., C. Thakur and K. Ishii. 1998. Determination of genetic stability in long term microprogated shoots of Pinus thungergii part using RAPD markers. Plant Cell Rep. 18:193-197. https://doi.org/10.1007/s002990050555
  16. Harn, C. 1973. Orchid. Kor. J. Plant Tissue Cult. 1:40-47 (in Korean).
  17. Jung, M.S., Y.H. Joung, J.H. Lee, J.K. Choi, K.S. Kim and T.H. Han. 2008. Assessment of genetic diversity of Hedera spp. using RAPD marker technique. J. Kor. Flower Res. 16:28-35 (in Korean).
  18. Karp, A. 1991. On the current understanding of somaclonal variation. In Oxford Surveys of Plant Molecular and Cell Biology Vol 7. Oxford University Press, New York, USA. pp. 1-58.
  19. Kim, B.M. 2004. Analysis of phenotypic and genetic polymorphism of self-pollinated Korean native Cymbidium goeringii seedlings. Department of Horticulture, M.A. Thesis, Seoul Women's Univ. pp. 20-29 (in Korean).
  20. Kim, J.Y. and J.S. Lee. 1992. Effect of cultural conditions on rhizome growth and organogenesis of Cymbidium lancifolium native to Korea in vitro. J. Kor. Soc. Hort. Sci. 33:471-476 (in Korean).
  21. Kishor, R. and H.S. Devi. 2009. Induction of multiple shoots in a monopodial orchid hybrid (Aerides vandarum Reichb.f x Vanda stangeana Reichb.f) using thidiazuron and analysis of their genetic stability. Plant Cell Tiss. Org. Cult. 97(2):121-129. https://doi.org/10.1007/s11240-009-9506-1
  22. Larkin, P.J. and W.R. Scowcroft. 1981. Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197-214. https://doi.org/10.1007/BF02342540
  23. Lee, J.S. and B.H. Kwack. 1985. Studies on ecology of Korean native wild orchids. III. Geographical distribution of genus Cymbidium. J. Kor. Soc. Hort. Sci. 26:140-144 (in Korean).
  24. Lee, H.Y., J.S. Jung and J.S. Lee. 1998. Induction of chlorophyll deficient mutant plant of Cymbidium kanran by EMS treatment. Kor. J. Plant Tissue Cult. 25:183-187.
  25. Martins, M., D. Sarmento and M.M. Oliveira 2004. Genetic stability of micropropagated almond plantlets, as assesed by RAPD and ISSR markers. Plant Cell Rep. 23:492-496. https://doi.org/10.1007/s00299-004-0870-3
  26. Modgil, M., K. Mahajan, S.K. Chakrabarti, D.R Sharma and R.C. Sobti. 2005. Molecular analysis of genetic stability in micropropagated apple rootstock MM106. Sci. Hort. 104:151-160. https://doi.org/10.1016/j.scienta.2004.07.009
  27. Murashige T and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tabacco tissue culture. Physiol. Plant. 15:473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  28. Na, A.S., C.G. Been, K.B. Lim and R.J. Byoung. 2007. Observation of morphological variations and selection of specific RAPD marker for somaclonal variation in Phalaenopsis clones. J. Kor. Flower Res. 15:174-178.
  29. Obara-Okeyo, P. and S. Kako. 1998. Genetic diversity and identification of Cymbidium cultivars as measured by random amplified polymorphic DNA (RAPD) markers. Euphytica 99:95-101. https://doi.org/10.1023/A:1018374226074
  30. Park, Y.C., M.S. Seong, S.R. Kim and S.W. Song. 2005. RAPD-mediated genetic relationship analysis of Cymbidium. J. Kor. Flower Res. 13:25-30 (in Korean).
  31. Parani, M., A. Anand and A. Parida. 1997. Application of RAPD fingerprinting in selection of micropropagated plants of Piper longum for conservation. Current Sci. 73:81-83.
  32. Peschke, V.M., R.L. Phillips and B.G. Genenbach. 1987. Discovery of transposable element activity among progeny of tissue culture derived maize plants. Science 238:804-807. https://doi.org/10.1126/science.238.4828.804
  33. Raimondi, J.P., R.W. Masuelli and E.L. Camadro. 2001. Assesment of somaclonal variation in aspragus by RAPD fingerprinting and cytogenic analyses. Sci. Hort. 90:19-29. https://doi.org/10.1016/S0304-4238(00)00250-8
  34. Scowcroft, W.R., R.I.S. Bretell, S.A. Ryan, P.A. Davis and M.A. Pallota. 1987. Somaclonal variation and genomic flux. In Plant Tissue and Cell Culture (eds.). Alan R. Liss, England. pp. 275-286.
  35. Silva, J.A., N. Singh and M. Tanaka. 2006. Priming biotic factors for optimal protocorm-like body and callus induction in hybrid Cymbidium (Orchidaceae), and assessment of cytogenetic stability in regenerated plantlets. Plant Cell Tiss. Org. Cult. 84(2):100119-100128. https://doi.org/10.1007/s11240-005-9003-0
  36. So, I.S., J.Y. Choi, T.S. Ko and B.J. Oh. 1998. Growth characteristics of a dwarf mutant in Cymbidium kanran and its genetic relationship evaluated by random amplified polymorphic DNA analysis. J. Kor. Flower Res. Soc. 7:11-18 (in Korean).
  37. Williams, J.G.K., A.R. Kubelik and L.J. Livuk. 1990. DNA Polymorphisms amplified by arbitray primers are useful as genetic markers. Nucl. Acids Res. 18:6531-6535. https://doi.org/10.1093/nar/18.22.6531
  38. Yuan, X.F., Z.H. Dai, X.D. Wang and B. Zhao. 2009. Assessment of genetic stability in tissue-cultured products and seedlings of Saussurea in volucrata by RAPD and ISSR markers. Biotech. Lett. 31(8):1279-1287. https://doi.org/10.1007/s10529-009-9984-6
  39. Zheng, K.L., S. Castiglione, M.G. Biasini, C. Morandi and F. Sala. 1987. Nuclear DNA amplification and genetic mapping. Nucl. Acids Res. 19:303-306.
  40. Zhou, T.S. 1995. In vitro culture of Doritaenopsis: comparison between formation of the hyperhydric protocorm-like body (PLB) and the normal PLB. Plant Cell Rep. 15:181-185. https://doi.org/10.1007/BF00193716

Cited by

  1. Plant Regeneration and Genetic Diversity of Regenerants from Seed-derived Callus of Reed (Phragmites communis Trinius) vol.26, pp.2, 2013, https://doi.org/10.7732/kjpr.2013.26.2.320
  2. Genetic authentication of cultivars with flower-variant types using SSR markers in spring orchid, Cymbidium goeringii vol.61, pp.3, 2011, https://doi.org/10.1007/s13580-020-00243-9