• Title/Summary/Keyword: polymerization time

Search Result 515, Processing Time 0.026 seconds

Effect of Temperature on Formation of Polymer in Oxidation of Methyl Linoleate (Methyl Linoleate 산화중 중합체 형성에 미치는 온도의 영향)

  • Kim, In-Hwan;Kim, Chul-Jin;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.446-450
    • /
    • 1996
  • To investigate the effect of heating conditions on the polymerization of methyl linoleate, the esters were heated at $60^{\circ}C,\;90^{\circ}C,\;120^{\circ}C$ and $150^{\circ}C$, respectively, with sparging oxygen for different periods of time. On the basis of the peroxide curve obtained at each of the four temperatures, four heating times were chosen for the analysis of the polymers and total oxidation products. Significant linear relationships were found between polymer contents and total oxidation product contents. The contents of polymers and their linkage types were analyzed by High Performance Size Exclusion Chromatography. The polymers formed at four temperatures were qualitatively identified as dimers. The dimers with peroxide linkages were detected from methyl linoleate oxidized at $60^{\circ}C\;and\;90^{\circ}C$ but they were not detected from methyl linoleate oxidized at $120^{\circ}C\;and\;150^{\circ}C$. Therefore, all dimers formed at $120^{\circ}C\;and\;150^{\circ}C$ seemed to be the ones with ether linkage or carbon to carbon linkage. The degradation rate of the dimers with peroxide linkages at $90^{\circ}C$ was faster than at $60^{\circ}C$.

  • PDF

MECHANICAL PROPERTIES AND MICROLEAKAGE OF COMPOSITE RESIN MATERIALS CURED BY VARIABLE LIGHT INTENSITIES (가변 광도에 따른 복합레진의 기계적 물성 및 변연누출도 변화)

  • Han, Seung-Ryul;Min, Kyung-San;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.2
    • /
    • pp.134-145
    • /
    • 2003
  • Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique. Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, $200{\;}mW/\textrm{cm}^2$ were initially used for 10, 20, 30 seconds each and the maximum intensity of $600 {\;}mW/\textrm{cm}^2$ was used for the rest of curing time in a soft-start curing tech nique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of $600{\;}mW/\textrm{cm}^2$. After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was $4{\times}3{\times}1.5{\;}mm$ and cured under those conditions. Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups. The results were as follows : 1 Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of $50{\;}mW/\textrm{cm}^2$. 2. Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength. 3. Soft-start group that started curing with an initial light intensity of $100{\;}mW/\textrm{cm}^2$ for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of $200{\;}mW/\textrm{cm}^2$ for 10 seconds showed the smallest marginal gap, if there was no difference among groups. 4. Soft-start technique resulted in better dye-proof margin than conventional technique(p=0.014) and ramping technique(p = 0.002). 5. There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation. From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage. It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

Synthesis and Application of cPSMA-PSMA Microcapsule Absorbent for Cement Mortars (시멘트 모르타르용 cPSMA-PSMA 마이크로캡슐 흡수제 제조 및 적용)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • We synthesized microcapsule absorbent with crosslinked poly(styrene-$alt$-maleic anhydride) (PSMA) as a core and PSMA as a shell by a precipitation polymerization method for the delayed absorption of excess water in cement mortar. cPSMA-PSMAs with core-shell structure were synthesized with ratios of 1/1, 1/2 and 1/3 as core monomer mass to shell monomer mass to control shell thickness. We observed the hydrolysis of PSMA in cement-saturated aqueous solution by a FTIR spectrometer. We observed good core-shell structure microcapsules for 1/2(cPSMA #3), but observed incomplete core-shell structure for 1/1(cPSMA #2) and 1/3(cPSMA #4) of core/shell monomer ratios. The swelling ratio of cPSMA #3 in cement-saturated aqueous solution was increased until 20 min. After that it was decreased until 2 hrs swelling time, and they started to increase again. The viscosities of cement paste with cPSMA #3 microcapsules were very slowly increased until 1 hr and increased fast after 1.5 hrs. Cement mortar with 0.5 wt% cPSMA #1 having only core part showed about 5% increase in compressive strength compared to that of plain cement mortar. cPSMA #3 added cement mortar showed the highest compressive strength with 7% increase.

Preparation and Characterization of Bead Type Superabsorbent Resin (비드형 고흡수성 수지의 제조 및 특성연구)

  • Ahn, Kyo Duck;Yoon, Minjoong
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.760-766
    • /
    • 2014
  • Bead type super-absorbent resins to be used for release-control were prepared by modification of the inverse suspension polymerization, and their physical properties were characterized. Acrylic acid and acrylamide were used as monomers, and N,N-methylenebisacrylamide was used as crosslinker, controlling the viscosity of monomer solution by adding hydroxyethylcellulose (HEC). SEM studies of the synthesized beads verified that the bead surfaces had many pores with their diameters of several tens nm. The bead sizes were in the range of $500{\sim}3000{\mu}m$, depending on the viscosity of the monomer solution. Both absorbent amount and absorbent rate of the beads were inversely proportional to the bead size, and the maximum water absorbent amount of 1 g beads was determined to be ca. 170~200 g for 5 hrs. The absorbent rate was also dependent on pH change of the aqueous solution, exhibiting the maximum rate in pH ranging from 5 to 11. The absorbent rate decreased as the concentration of salt (NaCl and $MgCl_2$) or ethanol and ethylene glycol increased. Release time of the water absorbed into the bead resins was 700 hrs, confirming the usefulness of the resin for the good release-control materials.

Synthesis and Effect of Plasma Treatment of Acrylic Composite Particle Binder (아크릴계 복합입자 바인더의 제조와 플라즈마 처리영향)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2008
  • Kind of monomer(MMA, EA, BA, St)and the monomer ratio(80/20 to 20/80) where changed in the preparation of the core shell binder, and property was improved the plasma processing. Each material changed by plasma treatment time($1{\sim}10\;s$) to change to measure the tensile strength, contact angle and adhesion peel strength for the core shell binder optimal conditions for handling the output of the surface treatment. The type of polymerization and composition of the binder is a regardless initiator of APS, the reaction temperature of $85^{\circ}C$ to 0.3 wt% of the surfactant used to indicate when the conversion rate was the highest, core shell composite particle binder got two glass temperature curves. Core shell binder after the plasma processing contact angle change is the PEA/PSt 38 percent of cases within five seconds to indicate slight decrease was a decline rapidly if not handled $0^{\circ}$ to reach. Tensile strength PSt/PMMA varies $46.71{\sim}46.27\;kg_f$/2.5 cm and adhesion strength PEA/PMMA varies $7.89{\sim}14.44\;kg_f$/2.5 cm increases. Overall, adhesion strength of core shell composite particle is in the order of order PEA>PBA>PSt for shell monomer MMA.

Synthesis of Sulfonated PET-g-GMA Fine Ion-exchange Fibers for Water Treatment by Photopolymerization and Their Adsorption Properties for Metal Ions (광중합법을 이용한 수처리용 설폰산형 PET-g-GMA 극세 이온 교환 섬유의 합성 및 금속 이온 흡착 특성)

  • Kwak Noh-Seok;Hwang Taek-Sung;Kim Sun-Mi;Yang Yun-Kyu;Kang Kyung-Seok
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.397-403
    • /
    • 2004
  • The sulfonated PET-g-GMA ion-exchange fine fibers were synthesized by UV radiation-induced graft copolymerization using a photoinitiator, and their chemical structure and adsorption properties were investigated. The optimum values for synthetic conditions - UV intensity, reaction time, and reaction temperature were 450 W, 60 min, and $40^{\circ}C$, respectively. Maximum values of the degree of sulfonation and ion exchange capacity were 8.12 mmol/g and 3.25 meq/g, respectively. Tensile strength of sulfonated PET-g-GMA fine ion exchange fibers was lower than that of PET trunk polymer as the grafting reaction rates increased. It was shown that as for the adsorption rate of $Ca^{2+}$ and $Mg^{2+}$ by the sulfonated PET-g-GMA fine ion exchange fibers, magnesium ion is slower than calcium ion in the solution. However, in the mixture of the calcium and magnesium ions, the adsorption rate of calcium ion was much slower than that of magnesium ion.

Synthesis and Characterization of Poly(ethylene glycol) Grafted Polysuccinimide (폴리(에틸렌 글리콜)이 결합된 Polysuccinimide의 합성과 특성)

  • Lim, Nak-Hyun;Lee, Ha-Young;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • Poly(amino acid) derivatives have been widely investigated as a drug carrier in drug delivery system. Particularly,polysuccinimide (PSI) is one of the most promising drug carriers since it possesses suitable physicochemical characteristics for development of macromolecular prodrugs, due to biocompatibility and biodegradability. In this study, we deal with the synthesis of polyaspartamide having various functional groups such as methoxy-poly(ethylene glycol) (MPEG) via ring closing of PSI. PSI was synthesized by polyonensation polymerization of spartic acid. The variety of average molecular weight was confirmed with reacion time and catalyst content to observe the optimum condition of synthesis. MPEG, hydrophilic chain, was bonded to fabricate polymeric micell composed of hydrophilic and hydrophobic polymer. All materials were characterized by 1H-NMR, FT-IR and GPC. In addition, the formation of nanoparticle micelle as drug carrier were also examined. Micelle size was measured by ELS and AFM. The functionalized polysparamide formed nanoparticle micelle whose size ranged from 90 to 130 nm. In conclusion, we prepared polyaspartamide functionalized with PEG examined the possibility as drug carriers.

Application of 3D printer in dental clinic (치과 진료실에서 3D 프린트의 활용)

  • Kim, Hyun Dong
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.82-96
    • /
    • 2018
  • 3D printing is a process of producing 3d object from a digital file in STL format by joining, bonding, sintering or polymerizing small volume elements by layer. The various type of 3d printing is classified according to the additive manufacturing strategies. Among the types of 3D printer, SLA(StereoLithography Apparatus) and DLP(Digital Light Processing) 3D printer which use polymerization by light source are widely used in dental office. In the previous study, a full-arch scale 3d printed model is less precise than a conventional stone model. However, in scale of quadrant arch, a 3d printed model is significantly precise than a five-axis milled model. Using $3^{rd}$ Party dental CAD program, full denture, provisional crowns and diagnostic wax-up model are fabricated by 3d printer in dental office. In Orthodontics, based on virtual setup model, indirect bracket bonding tray can be generated by 3d printer. And thermoforming clear aligner can be fabricated on the 3d printed model. 3D printed individual drilling guide enable the clinician to place the dental implant on the proper position. The development of layer additive technology enhance the quality of 3d printing object and shorten the operating time of 3D printing. In the near future, traditional dental laboratory process such as casting, denture curing will be replaced by digital 3D printing.

THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION (광중합 복합레진의 중합초기 동적 점탄성의 변화)

  • Kim, Min-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.450-459
    • /
    • 2009
  • The aim of this study was to measure the initial dynamic modulus changes of light cured composites using a custom made rheometer. The custom made rheometer consisted of 3 parts: (1) a measurement unit of parallel plates made of glass rods, (2) an oscillating shear strain generator with a DC motor and a crank mechanism, (3) a stress measurement device using an electromagnetic torque sensor. This instrument could measure a maximum torque of 2Ncm, and the switch of the light-curing unit was synchronized with the rheometer. Six commercial composite resins [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), and Clearfil AP-X (CF)] were investigated. A dynamic oscillating shear test was undertaken with the rheometer. A certain volume ($14.2\;mm^3$) of composite was loaded between the parallel plates, which were made of glass rods (3 mm in diameter). An oscillating shear strain with a frequency of 6 Hz and amplitude of 0.00579 rad was applied to the specimen and the resultant stress was measured. Data acquisition started simultaneously with light curing, and the changes in visco-elasticity of composites were recorded for 10 seconds. The measurements were repeated 5 times for each composite at $25{\pm}0.5^{\circ}C$. Complex shear modulus G*, storage shear modulus G', loss shear modulus G" were calculated from the measured strain-stress curves. Time to reach the complex modulus G* of 10 MPa was determined. The G* and time to reach the G* of 10 MPa of composites were analyzed with One-way ANOVA and Tukey's test ($\alpha$ = 0.05). The results were as follows. 1. The custom made rheometer in this study reliably measured the initial visco-elastic modulus changes of composites during 10 seconds of light curing. 2. In all composites, the development of complex shear modulus G* had a latent period for $1{\sim}2$ seconds immediately after the start of light curing, and then increased rapidly during 10 seconds. 3. In all composites, the storage shear modulus G" increased steeper than the loss shear modulus G" during 10 seconds of light curing. 4. The complex shear modulus of Z1 was the highest, followed by CF, Z2, Z3, TC and DF the lowest. 5. Z1 was the fastest and DF was the slowest in the time to reach the complex shear modulus of 10 MPa.

Phase Behaviors of the GAP/PTMG Polyurethanes Chain Extended with 3-Azidopropane-1,2-Diol (3-Azidopropane-1,2-diol로 쇄연장된 GAP/PTMG 폴리우레탄의 상거동)

  • Kim, Hyoung-Sug;You, Jong-Sung;Kweon, Jung-Ohk;Kim, Jung-Su;Lee, Tong-Sun;Noh, Si-Tae;Jang, Young-Ok;Kim, Dong-Kuk;Kwon, Sun-Kil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.377-384
    • /
    • 2010
  • We perform a comparative study to investigate the properties of the new energetic chain extender (AzPD). A series of poly(glycidyl azide)/poly(tetramethylene oxide)-based energetic segmented polyurethane (GAP/PTMG ESPU) with different chain extender, which is 3-azidopropane-1,2-diol (AzPD), 1,4-butane diol (1,4-BD), or 1,5 pentane diol (1,5-PD), was synthesized by solution polymerization in dimethyl formamide (DMF) and their phase behaviors were investigated. The ESPUs were characterized with Fourier transform infrared-attenuated total reflection spectroscopy (ATR FT-IR), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results of the ATR FT-IR analysis of the urethane carbonyl group region showed that the 'free' C=O fraction was higher in GAP/PTMG AzESPU (0.5) than GAP/PTMG BDESPU (0.44) and GAP/PTMG PDESPU (0.41) for 7 days samples after preparation and that it was similar in the range of 0.26~0.29 for three 60 days ESPU samples. DMA curves of the GAP/PTMG AzESPU for 7 days samples showed amorphous polymers, but GAP/PTMG BDESPU and GAP/PTMG PDESPU showed viscoelastic behaviors with rubbery plateau and the flow region. However, DMA curves of the GAP/PTMG AzESPU for 60 days samples showed viscoelastic behaviors with rubbery plateau and the flow region like GAP/PTMG PDESPU, but GAP/PTMG BDESPU did not show the flow region. From phase behaviors with ATR FT-IR, DSC and DMA analysis, GAP/PTMG AzESPU showed good phase-mixing between components. However, it represented viscoelastic behavior of TPE similar to GAP/PTMG PDESPM according to phase equilibrium progress with aging time.