Browse > Article

Phase Behaviors of the GAP/PTMG Polyurethanes Chain Extended with 3-Azidopropane-1,2-Diol  

Kim, Hyoung-Sug (Department of Chemical Engineering, Hanyang University)
You, Jong-Sung (Department of Chemical Engineering, Hanyang University)
Kweon, Jung-Ohk (Department of Chemical Engineering, Hanyang University)
Kim, Jung-Su (Department of Chemical Engineering, Hanyang University)
Lee, Tong-Sun (Department of Chemical Engineering, Hanyang University)
Noh, Si-Tae (Department of Chemical Engineering, Hanyang University)
Jang, Young-Ok (Department of Bio-Nano Technology, Hanyang University)
Kim, Dong-Kuk (Department of Applied Chemistry, Hanyang University)
Kwon, Sun-Kil (Agency for Defense Development)
Publication Information
Applied Chemistry for Engineering / v.21, no.4, 2010 , pp. 377-384 More about this Journal
Abstract
We perform a comparative study to investigate the properties of the new energetic chain extender (AzPD). A series of poly(glycidyl azide)/poly(tetramethylene oxide)-based energetic segmented polyurethane (GAP/PTMG ESPU) with different chain extender, which is 3-azidopropane-1,2-diol (AzPD), 1,4-butane diol (1,4-BD), or 1,5 pentane diol (1,5-PD), was synthesized by solution polymerization in dimethyl formamide (DMF) and their phase behaviors were investigated. The ESPUs were characterized with Fourier transform infrared-attenuated total reflection spectroscopy (ATR FT-IR), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The results of the ATR FT-IR analysis of the urethane carbonyl group region showed that the 'free' C=O fraction was higher in GAP/PTMG AzESPU (0.5) than GAP/PTMG BDESPU (0.44) and GAP/PTMG PDESPU (0.41) for 7 days samples after preparation and that it was similar in the range of 0.26~0.29 for three 60 days ESPU samples. DMA curves of the GAP/PTMG AzESPU for 7 days samples showed amorphous polymers, but GAP/PTMG BDESPU and GAP/PTMG PDESPU showed viscoelastic behaviors with rubbery plateau and the flow region. However, DMA curves of the GAP/PTMG AzESPU for 60 days samples showed viscoelastic behaviors with rubbery plateau and the flow region like GAP/PTMG PDESPU, but GAP/PTMG BDESPU did not show the flow region. From phase behaviors with ATR FT-IR, DSC and DMA analysis, GAP/PTMG AzESPU showed good phase-mixing between components. However, it represented viscoelastic behavior of TPE similar to GAP/PTMG PDESPM according to phase equilibrium progress with aging time.
Keywords
polyurethane; energetic binder; viscoelastic behaviors; energetic chain extender;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Y. Ou, B. Chen, H. Yan, H. Jia, J. Li, and S. Dong, J. of Propulsion and power, 11, 838 (1995).   DOI   ScienceOn
2 S. Abouzahr and G. L. Wilkes, Journal of Applied Polymer Science, 29, 2695 (1984)   DOI   ScienceOn
3 J. T. Koberstein and T. P. Russell, Macromolecules, 19, 714 (1986)   DOI
4 C. S. Paik Sung, C. B. Hu, and C. S. Wu, Macromolecules, 13, 111 (1980)   DOI
5 R. W. Seymour and S. L. Cooper, J. Polym. Sci., Polym. Lett. Ed., 9, 689 (1971).   DOI
6 C. Hepburn, Polyurethane Elastomers, Elsevier Science, New York (1992).
7 V. A. Vilensky and Y. S. Lipatov, Polymer, 35, 3069 (1994)   DOI   ScienceOn
8 W. G. Miller and J. H. Saunders, J. Appl. Polym. Sci., 13, 1277 (1969).   DOI
9 G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, 2, Hanser Gargner Publication (1996).
10 J. D. Ingham, W. L. Petty, and P. L. Nichols, Jr., J. Org. Chem., 21, 373 (1956).   DOI
11 Y. Li, T. Gao, J. Liu, K. Linliu, C. R. Desper, and B. Chu, Macromolecules, 25, 7365 (1992)
12 R. Bonart and E. H. Muller, J. Macromolecular Science : Physics., B10, 177 (1974)
13 G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati (1996).
14 S. Fakirov, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim.
15 M. M. Coleman, K. H. Lee, D. J. Skrovanek, and P. C. Painter, Macromolecules, 19, 2149 (1986).   DOI
16 C. M. Brenette, S. L. Hsu, and W. J. Macknight, Macromolecules, 15, 71 (1982)   DOI
17 B. Finck and H. Graindorge, New Molecules for high Energetic Materials. In 27th int. annu. ICT Conf. (energetic materials), 23 (1996).
18 G. Holden, H. R. Legge, R. Quirk, and H. E. Schroeder, Thermoplastic Elastomers, 15 (1996).
19 X. R. Li, J. Zhang, and Y. Li, Macromolecules, 37, 7584 (2004).   DOI   ScienceOn
20 C. E. Wilkes and C. S. Yusek, J. Macromolecular Science : Physics., B7, 157 (1973)
21 T. R. Hesketh, J. W. C. Van Bogart, and S. L. Cooper, Polymer Engineering and Science, 20, 190 (1980)   DOI   ScienceOn
22 A. N. Nazare, S. N. Aathana, and H. J. Singh, Energetic Materials, 10, 43 (1992).   DOI   ScienceOn
23 B. D. Andrea, F. Lillo, A. Faure, and C. Perut, Acta Astronautica, 47, 2 (2000).
24 A. Provatas, DSTO-TR-0966, (2000) ; J. P. Agrawal, Prog. Energy Combust. Sci., 24, 1 (1998).   DOI   ScienceOn