Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.6.760

Preparation and Characterization of Bead Type Superabsorbent Resin  

Ahn, Kyo Duck (Dept. of Chemistry, Chungnam National University)
Yoon, Minjoong (Dept. of Chemistry, Chungnam National University)
Publication Information
Polymer(Korea) / v.38, no.6, 2014 , pp. 760-766 More about this Journal
Abstract
Bead type super-absorbent resins to be used for release-control were prepared by modification of the inverse suspension polymerization, and their physical properties were characterized. Acrylic acid and acrylamide were used as monomers, and N,N-methylenebisacrylamide was used as crosslinker, controlling the viscosity of monomer solution by adding hydroxyethylcellulose (HEC). SEM studies of the synthesized beads verified that the bead surfaces had many pores with their diameters of several tens nm. The bead sizes were in the range of $500{\sim}3000{\mu}m$, depending on the viscosity of the monomer solution. Both absorbent amount and absorbent rate of the beads were inversely proportional to the bead size, and the maximum water absorbent amount of 1 g beads was determined to be ca. 170~200 g for 5 hrs. The absorbent rate was also dependent on pH change of the aqueous solution, exhibiting the maximum rate in pH ranging from 5 to 11. The absorbent rate decreased as the concentration of salt (NaCl and $MgCl_2$) or ethanol and ethylene glycol increased. Release time of the water absorbed into the bead resins was 700 hrs, confirming the usefulness of the resin for the good release-control materials.
Keywords
bead; superabsorbent; release-control; inverse-suspension;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. L. Buchhholz and A. T. Graham, Modern Superabsorbent Polymer Technology, Elsevier, Amsterdam, 1998.
2 P. K. Chatterjee, Absorbency, Elsevier, New York, 1985.
3 N. W. Taylor and E. B. Bagley, J. Appl. Polym. Sci., 21, 1607 (1977).   DOI
4 P. Lepoutre, S. H. Hui, and A. A. Robertson, J. Macromol. Sci. Chem., A10, 681 (1976).
5 R. J. Po, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C34, 607 (1994).
6 A. S. Hoffman, Polymeric Materials Encyclopedia, CRC Press, Florida, 1996.
7 L. P. Krul, E. I. Narciko, Y. I. Matusevich, L. B. Yakimtsova, V. Matusevich, and W. Seeber, Polym. Bull., 45, 159 (2000).   DOI   ScienceOn
8 A. Pourjavadi, A. M. Harzandi, and H. Hossenzadeh, Eur. Polym. J., 40 1363 (2004).   DOI   ScienceOn
9 Y. Zhao, H. Su, L. Fang, and T. Tan, Polymer, 46, 5368 (2005).   DOI
10 L. Yin, L. Fei, F. Cui, C. Tang, and C. Yin, Biomaterials, 28 1258 (2007).   DOI   ScienceOn
11 A. M. Cottenden, J. Biomed. Eng., 10 506 (1988).   DOI
12 T. Tanaka, S. T. Sun, Y. Hirokawa, S. Katayama, J. Kucera, Y. Hirose, and T. Amiya, Nature, 325, 796 (1987).   DOI
13 A. Pourjavadi and H. Hossinzadeh, Bull. Korean Chem. Soc., 31, 3163 (2010).   DOI
14 M. V. Badiger, M. E. Mcnail, and N. B. Graham, Biomaterials, 14, 1059 (1993).   DOI
15 J. Chen and K. Park, J. Control. Rel., 65, 73 (2000).   DOI
16 J. Chen and K. Park, Carbohydr. Polym., 41, 259 (2000).   DOI
17 T. Gotoh, Y. Nakatani, and S. Sakohara, J. Appl. Polym. Sci., 69, 895 (1998).   DOI   ScienceOn
18 S. J. Smith and E. J. Lind, U.S. Patent 5,399,591 (1995).
19 P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaka, New York, 1953.
20 G. Pass, G. O. Philips, and D. J. Wedlock, Macromolecules, 10, 197 (1997).
21 M. J. Zohuriaan-Mehr, Z. Motazdi, K. Kabiri, A. Ershad- Langrodi, and I. Allashdadi, J. Appl. Polym. Sci., 102, 5667 (2006).   DOI   ScienceOn
22 H. Omidian, S. A. Hashemi, P. G. Sammes, and I. Meldrum, Polymer, 39, 6697 (1998).   DOI   ScienceOn
23 E. A. Grulke, in Polymer Handbook, Wiley, New York, U.S.A., Vol. 2, p 675 (1999).
24 B. W. Brooks and H. N. Richmond, Chem. Eng. Sci., 49 1053 (1987).
25 A. Pourjavadi, H. Hosseinzadeh, and R. Mazdi, J. Appl. Polym. Sci., 98, 255 (2005).   DOI   ScienceOn