Browse > Article

Synthesis and Characterization of Poly(ethylene glycol) Grafted Polysuccinimide  

Lim, Nak-Hyun (Department of Polymer. Nano Science and Technology, Chonbuk National University)
Lee, Ha-Young (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Kim, Moon-Suk (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Khang, Gil-Son (Department of Polymer. Nano Science and Technology, Chonbuk National University)
Lee, Hai-Bang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Cho, Sun-Hang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Publication Information
Polymer(Korea) / v.29, no.1, 2005 , pp. 36-40 More about this Journal
Abstract
Poly(amino acid) derivatives have been widely investigated as a drug carrier in drug delivery system. Particularly,polysuccinimide (PSI) is one of the most promising drug carriers since it possesses suitable physicochemical characteristics for development of macromolecular prodrugs, due to biocompatibility and biodegradability. In this study, we deal with the synthesis of polyaspartamide having various functional groups such as methoxy-poly(ethylene glycol) (MPEG) via ring closing of PSI. PSI was synthesized by polyonensation polymerization of spartic acid. The variety of average molecular weight was confirmed with reacion time and catalyst content to observe the optimum condition of synthesis. MPEG, hydrophilic chain, was bonded to fabricate polymeric micell composed of hydrophilic and hydrophobic polymer. All materials were characterized by 1H-NMR, FT-IR and GPC. In addition, the formation of nanoparticle micelle as drug carrier were also examined. Micelle size was measured by ELS and AFM. The functionalized polysparamide formed nanoparticle micelle whose size ranged from 90 to 130 nm. In conclusion, we prepared polyaspartamide functionalized with PEG examined the possibility as drug carriers.
Keywords
aspartic acid; polysuccinimide; biodegradable; micelle; nanoparticle graft copolymer;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Muranishi, Crit. Rev. Ther. Drug. Carrier Syst., 7, 1 (2000)
2 H. Bader, H. Ringsdorf, and B. Schmidt, Angew. Makro. Chem., 123/124, 457 (1984)
3 G. S. Kwon and K. Kataoka, Adv. Drug Deliv. Rev., 16, 295 (1995)
4 P. Caliceti, S. M. Quarta, F. M. Veronese, G, Cavallaro, E. Pedone, and G. Giammona, Biochim. Biophy. Acta., 1528, 177 (2001)
5 M. Tomida, T. Nakato, S. Matsunami, and T. Kakuchi, Polymer, 38, 4733 (1997)
6 G. Giammona, B. Carlisi, and S. Palazzo, J. Polym. Sci., Polym. Chem., 25, 2813 (1987)   DOI   ScienceOn
7 G. Giammona, G. Puglisi, G. Cavallaro, A. Spadaro, and G. Pitarresi, J. Controlled Rel., 33, 261 (1995)
8 G. Pitarresi, F. S. Palumbo, G. Giammona, M. A. Casadei, and F. M. Moracci, Biomaterials, 24, 4301 (2003)   DOI   ScienceOn
9 Z. Wout, E. A. Pee, J. A. Maggiore, R. H. Williams, P. Palicharla, and T. P. Johnston, J. Parenteral Sci. Technol., 46, 192 (1992)
10 W. K. Palmer, E. E. Emeson, and T. P Johnston, Atherosclerosis, 136, 115 (1998)
11 G. Khang, J. M. Rhee, J. S. Lee, and H. B. Lee, Macromol. Res., 12, 4 (2001)
12 T. K. An, H. J. Kang, D. S. Moon, J. S. Lee, H. S. Seong, J. K. Jeong, G. Khang, and H. B. Lee, Polymer(Korea), 26, 670 (2002)
13 E. V. Batmkova, T. Y. Dorodnych, E. Y. Klinskii, E. N. Kliushnenkova, O. B. Shemchukova, O. N. Goncharova, S. A. AIjakov, V. Y. Alakhov, and A. V. Kabanov, Br. J. Cancer., 74, 1545 (1996)
14 S. I. Hong and B. C. Kim, Polymer(Korea), 6, 336 (1982)
15 Y. Zhang and R. Zhuo, Bivmaterials, 26, 2089 (2005)
16 M. Tomida, T. Nakato, M. Kuramochi, M. Shibata, S. Matsunami. and T. Kakuchi, Polymer, 37, 4435 (1996)
17 G. S. Kwon and T. Okano, Adv Drug Deliv. Rev., 21, 107 (1996)
18 T. Ouchi, M. Shiratani, M. Jinno, M. Hirao, and Y. Ohya, Macromol. Chem., 14, 825 (1993)
19 T. Hayashi and M. Iwatsuki, Biopolymers, 29, 549 (1990)
20 P. Neri, G. Antoni, F. Benvenuti, F. Cocoda, and G. Gazze, J. Med. Chem., 16, 893 (1973)
21 G. Giammona, B. Carlisi, G. Pitarresi, and G. Fontana, J. Bioact. Compat. Polym., 6, 129 (1991)
22 M. Yokoyama, A. Satoh, Y. Sakurai, T. Okano, Y. Matsumura, T. Kakizoe, and K. Kataoka, J. Controlled Rel., 55, 219 (1998)
23 H. S. Seong, D. S. Moon, G. Khang, and H. B. Lee, Polymer(Korea), 26, 128 (2002)
24 D. Lasic, Nature, 355, 279 (1992)
25 K. kataoka, A. Harada, and Y. Nagasaki, Adv. Drug Deliv. Rev., 47, 113 (2001)   DOI   PUBMED   ScienceOn
26 G. L. Jain and A. R. Ray, Macromol. Chem., 182, 2557 (1981)
27 S. K. Walk, G. Swift, T. H. Paik, K. M. Yocom, R. L. Smith, and E. S. Simon, Macromolecules, 27, 7613 (1994)
28 V. P. Torchilin, J. Controlled. ReI., 79, 137 (2001)
29 G. Giammona, G. Cavallaro, G. Fontana, G. De. Guidi, and S. Giuffrida, Eur. J. Pharm. Sci., 4, 273 (1996)
30 F. Castelli, G. Pitarresi, V. Tomarchio, and G. Gimmona, J. Controlled Rel., 45, 103 (1997)
31 H. S. Choi, G. Khang, H. Shin, J. M. Rhee, and H. B. Lee, Int. J. Pharm., 234,195 (2002)
32 K. Kataoka, Pure Appl. Chem., A31, 1759 (1994)
33 G. Giammona, B, Carlisi, G. Pitarresi, G. Cavallaro, and V. T. Liveri, J. Controlled Rel., 22, 197 (1992)