동부 묵 제조용 조전분과 정제전분의 이화학적 특성을 조사하였다. 물결합 능력은 조전분 135.1%, 정제전분 86.0%이었고, 온도, 온도증가에 따른 팽화력 및 용해도 변화양상은 조전분과 전제전분 모두 $60^{\circ}C$에서 증가하기 시작하여 $70^{\circ}C$부터 급격한 증가를 나타내었다. 시료 현탁액(0.2%)의 광투과도는 모두 $65^{\circ}C$에서 증가하기 시작하여 68~$80^{\circ}C$ 범위에서 두 단계의 급격한 증가를 보였고, Brabender amylograph에 의한 호화 양상 조사결과 조전분과 정제전분 모두 호화정점을 나타내었고 냉각점도가 높았다. 조전분과 정제전분의 blue number는 각각 0.369, 0.376이었고, alkali number는 각각 7.77, 7.34이었으며, ferricyanide number는 각각 3.60, 2.10이었다. Amylose함량은 33.7%이었고, amylose 분자량은 23590, 중합도는 146이었으며, amylopection의 분자도는 포도당 100개당 3.4, 한 가지당 포도당 분자수는 29개이었다.
키틴을 효소적인 방법으로 분해하여 키틴올리고머를 생산할 수 있는 값싸고 안정적인 효소원을 확보하기 위하여 농어, 방어, 대구, 닭 등의 동물체로 부터 키틴분해효소를 탐색하였다. 각 효소원의 장기와 소화액 및 달팽이 ${\beta}-glucuronidase$로 부터 키틴분해활성을 측정한 결과, 대구와 닭은 키틴을 주로 중합도 $3{\sim}5$의 크기로 분해하며 endochitinase의 활성도가 exochitinase활성보다 $7{\sim}10$배 높았다. 달팽이 ${\beta}-glucuronidase$는 키틴을 모두 N-acetylglucosamine으로 분해하였고 닭의 경우 소화기조직과 내용물에서 모두 endochitinase활성이 높았다. 어류중에서 농어는 키틴분해활성을 보이지 않았으며 방어와 대구는 비슷한 수준의 키틴분해활성을 보였다. 이들 효소의 최적pH는 $4{\sim}5$, 최적온도는 $50{\sim}60^{\circ}C$였다. 한편 키토산분해능력은 닭의 소화기내용물과 조직, 대구의 위조직에서 관찰되었으며, 닭 소화기내용물이 가장 높았으나 키틴분해능의 15%에 지나지 않았으며 그 다음은 달팽이의 ${\beta}-glucuronidase$로 닭 소화기내용물의 키토산분해능력의 약 30% 활성을 보였다. 키틴올리고머의 생산을 위한 가장 적합한 효소원으로 exochitinase활성이 적고, endochitinase활성이 높으며 값이 저렴하고 안정적인 공급이 가능한 닭의 소화기가 적합한 것으로 사료되었다.
메품종의 거대배아미인 화청거대배아미, 남풍거대배아미, 그리고 찰품종인 화청찰거대배아미, 신선찰거대배아미 등 4품종의 거대배아미 품종의 볍씨를 각각 $27^{\circ}C$에서 3일간 발아시켜, 발아에 따른 전분 가수분해 효소의 활성 및 전분입자의 이화학적 특성을 각각 비교하였다. 3일간 발아시킨 벼의 ${\alpha}-amylase$의 활성은 맥아에 비해서 활성이 높게 나타났으며, 특히 화청거대배아미 및 신선찰거대배아미는 맥아보다 약 2배 정도의 활성을 나타내고 있었다. 이에 비해서 ${\beta}-amylase$의 경우는 일반품종보다는 거대배아미품종의 활성이 높기는 하지만 비교군인 맥아에 비해서 상당히 낮은 활성을 나타내고 있었다. 전분분자 중 아밀로오스 분자 유래의 긴 포도당 사슬의 양은 발아와 더불어 메품종 거대배아미에서는 줄어들고 있었으며, 찰품종에서는 증가하고 있었다. 아밀로펙틴 분자 유래의 포도당 사슬길이 분포는 찰벼와 메벼 품종에 관계없이 발아와 더불어 중합도가 14부터 60가지 비율은 증가하고 있었으며, 중합도 130이상 또는 13이하의 비율은 감소하고 있었다. Glucoamylase에 의한 가수분해도는 거대배아미메품종의 경우에는 발아와 더불어 현저히 낮아지고 있었고, 찰품종의 경우에는 오히려 증가하고 있었다. 그리고 호화개시온도, 호화종료 및 호화엔탈피는 감소하고 있었다.
본 연구는 불소관능기인 perfluorocyclobutane (PFCB), fluorenyl, sulfonyl계 방향족 화합물을 동시에 포함하는 술폰화된 랜덤 고분자 전해질 막의 제조 및 그 특성에 관한 것이다. 이러한 고분자 전해질 막은 세단계의 합성, 즉 trifluorovinyloxy그룹을 양말단에 포함하는 단량체의 합성, 중부가반응 형태의 열중합, 그리고 chlorosulfonic acid를 이용한 후술폰화를 통하여 얻어졌다. 후술폰화 반응은 고분자 내에 포함된 fluorenyl기의 함량에 따라 일정한 몰비의 술폰화제 비율로 고정하여 진행되었으며, 이에 따라 다양한 이온교환 능력(IEC)을 가지는 고분자를 쉽게 합성할 수 있었다. 제조된 단량체 및 고분자들의 구조와 순도는 각각 FT-IR과 NMR 그리고 질량분석기를 통하여 확인되었다. 술폰화된 fluorenyl기가 많아질수록 술폰화도와 이온교환 능력이 증가하는 것을 확인할 수 있었고 그에 따른 함수율도 역시 증가하는 거동을 보였다. 술폰화된 고분자들의 이온전도도를 측정한 결과 술폰화도가 증가할수록 이온 전도도가 증가하는 것을 관찰할 수 있었다, 이렇게 제조된 전해질막 중 S-1과 S-2의 경우 다양한 온도범위($25{\sim}80^{\circ}C$)에서 상용 전해질막인 Nafion-115를 능가하는 우수한 이온전도도를 나타냈다.
Objectives: 3D printing technologies have become widely developed and are increasingly being used for a variety of purposes. Recently, the evaluation of 3D printing operations has been conducted through chamber test studies, and actual workplace studies have yet to be completed. Therefore, the objective of this study was to determine the emission of volatile organic compounds(VOCs), metals, and particles from printing operations at a workplace. This included monitoring conducted at a commercial 3D printing service workplace where the processes involved material extrusion, material jetting, binder jetting, vat photo polymerization, and powder bed fusion. Methods: Area samples were collected with using a Tenax TA tube for VOC emission and MCE filter for metals in the workplace. For particle monitoring, Mini Particle Samplers(MPS) were also placed in the printer, indoor work area, and outdoor area. The objective was to analyze and identify particles' size, morphology, and chemical composition using transmission electron microscopy with energy dispersive spectroscopy(TEM-EDS) in the workplace. Results: The monitoring revealed that the concentration of VOCs and metals generated during the 3D printing process was low. However, it also revealed that within the 3D printing area, the highest concentration of total volatile organic compounds(TVOC) was 4,164 ppb at the vat photopolymerization 3D printing workplace, and the lowest was 148 ppb at the material extrusion 3D printing workplace. For the metals monitoring, chromium, which, is carcinogenic for humans, was detected in the workplace. As a characteristic of the particles, nano-sized particles were also found during the monitoring, but most of them were agglomerated with large and small particles. Conclusions: Based on the monitoring conducted at the commercial 3D printing operation, the results revealed that the concentration of VOCs and metals in the workplace were within Korea's occupational exposure limits. However, due to the emission of nano-sized particles during 3D printing operations, it was recommended that the exposure to VOCs and metals in the workplace should be minimized out of concern for workers' health. It was also shown that the characteristics of particles emitted from 3D printing operations may spread widely within an indoor workplace.
본 연구에서는 부분지환족 dianhydride인 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (DOCDA)와 다섯가지 diamine (2,5-dimethyl-1,4-phenylene diamine (2M), 2,4,6-trimethyl-1,3-phenylene diamine (3M), 1,5-naphthalene diamine (NDA), 4,4-diaminodiphenyl methane (MDA), 4,4'-diaminodiphenyl ether (ODA))을 two-step 이미드화를 통해 공중합하였다. 합성된 폴리이미드 공중합체를 FT-IR, 고유점도, DSC, TGA 그리고 용해도 측정을 통해 구조분석 및 물성을 확인하였다. 또한 6FDA를 dianhydride로 한 공중합체를 같은 방법으로 합성하여 함께 비교하였다. 그 결과, 모든 공중합체는 0.32~0.58의 고유점도를 가졌으며, DOCDA계 공중합체는 6FDA를 포함한 공중합체보다 약간 낮은 값을 보이나 약 $400^{\circ}C$까지 견딜 수 있는 열적 안정성과 여러 가지 용매에 대한 우수한 용해성을 나타내었다. 또한 얻어진 폴리이미드를 이용해 평막을 제조하여 $CO_2$ 및 $CH_4$에 대한 기체투과도를 평가하였고 공중합체는 구조변화에 따른 투과-선택도의 상충관계를 보여주었다.
고위도에서의 온도 상승은 $0.6^{\circ}C$/10 년으로, 이는 토양 유기 탄소에 대한 미생물의 분해 활성 증가를 유도한다. 게다가, 분해된 토양 유기 탄소는 이산화탄소 또는 메탄 같은 온실가스로 전환, 방출되어 기후 변화를 가속화시킨다. 따라서, 토양 유기 탄소 분해와 관련된 미생물의 다양성 및 기능 이해를 위한 토양 해동 모델 연구가 필요하다. 이러한 연구를 위하여 Alaska Council의 두 깊이의 토양(SPF와 PF라 각각 명명한 30-40와 50-60 cm 깊이의 토양)을 $0^{\circ}C$에서 108일 동안 배양하였다. 환경 모사 실험 동안 pyrosequencing을 수행하였고, metagenome을 분석하여 총 111,804개의 미생물 sequence를 얻었다. 이 중, 574-1,128개의 세균 operational taxonomic unit (OTU)과 30-57개의 고세균 OTU를 확인하였다. 토양 배양에 따라 두 토양 모두에서 Crenarchaeota phyla의 상대적 분포가 증가하였으며, Actinobacteria와 Firmicutes phyla의 분포가 SPF와 PF에서 각각 크게 증가하였다. 추출한 토양 유기 탄소에 대한 무게 측정 및 gel permeation chromatography를 통해, 환경 모사 실험이 진행되는 동안 토양 유기 탄소의 주요 구성 성분인 부식산(humic acids)이 중합화(humification)되는 것을 확인하였다. 결론적으로, 냉대 툰드라 동토의 해동은 Crenarchaeota, Actinobacteria 및 Firmicutes phyla의 증가를 야기시키며, 미생물에 의한 토양 유기 탄소 분해 및 이용을 야기시키는 것으로 예측된다.
Escherichia coli의 오르니틴 트란스카바밀라제는 오르니틴과 카바밀인산으로부터 시트룰린의 합성을 촉진시키는 효소이다. 이 효소의 기능과 구조와의 상관관계, 반응메카니즘 등 생화학적 연구를 하기 위하여 대량의 효소를 추출할 필요가 있다. 본 연구는 오르니틴 트란스카바밀라제의 대량생산 시스템을 확립하기 위하여 E. coli argI 유전자를 E. coli $DH5{\alpha}$ 세포의 염색체 DNA를 추출한 후에 PCR 방법으로 증폭시켜 얻었다. 증폭된 argI 유전자를 단핵생물 단백질 발현벡터인 pKK223-3에 접합시킨 후, 오르니틴 트란스카바밀라제가 존재하지 않은 E. coli TB2 세포에 클로닝 시켰다. 이 세포로부터 생산된 오르니틴 트란스카바밀라제는 암모늄염에 의한 분할, 열변성, 크로마토그래피 등을 사용하여 순수하게 분리하였다. SDS 단백질 전기영동 결과 약 38 kDa 크기의 효소가 순수하게 얻어졌다. 반응속도론적 실험결과 $K_{cat}$은 $1{\times}10^5m^{-1}$, $K_M$은 오르니틴에 대하여는 0.35 mM, 카바밀인산에 관하여는 0.06 mM이 각각 얻어졌다. 이 결과는 야생형 오르니틴 트란스카바밀라제의 반응속도 인자들과 비슷한 값이다. 본 연구는 이들 결과로부터 오르니틴 트란스카바밀라제의 기능을 하는 E. coli argI 유전자가 클로닝 되었음을 확인하였다.
전도성 고분자 센서 (Conducting polymer sensors)는 상온에서 휘발성 유기 화합물 가스 (Volitile organic compounds gases)에 대해 감도를 가지고 있다. 화학 중합으로 제조된 전도성고분자인 polypyrrole과 polyaniline로 이루어진 8개의 센서 어레이를 이용하여 VOCs 가스에 대한 감응 특성을 살펴보았다. 화학 중합으로 합성된 각 센서들은 증류된 pyrrole, aniline과 dopant로 dodecylbenzene sulfonic acid (DBSA)와 산화제로 ammonium persulfate (APS) 그리고 증류수를 이용하여 제조되었으며, 각 센서들의 특성 부여를 위해 redoping과 dedoping은 전기화합법을 이용하여 제조하였다. Dedoping 법은 전압을 반대로 걸어주어 처음 첨가된 dopant를 전해질 속으로 빼냈으며, redoping법은 1-octanesulfonic acid sodium salt를 화합중합으로 형성된 막에 다시 첨가 시켰다. 감도와 가역성은 doping, dedoping, redoping 그리고 두께에 따라 영향을 받는다는 것을 알 수 있었다. 이들 전도성 고분자의 구조와 감도와의 관계를 scanning electron microscope (SEM), scanning probe microscope (SPM) 그리고 $\alpha$-step을 사용하여 조사하였다.
식품용 종이포장재 등에 사용될 수 있는 UV 잉크 인쇄방식에는 광개시제를 이용한 경화방식 또는 전자빔을 이용한 경화방식이 주로 사용된다. 최근 유럽에서 종이팩 포장재의 광개시제로 사용될 수 있는 Isopropylthioxanthone (ITX)에 대한 검출사례가 보고 된 바 있으나, 국내에서는 종이팩 포장재 중 ITX에 대한 모니터링연구가 전무한 상태이므로 제외국 연구동향에 신속히 대응할 수 있는 ITX 분석방법을 확립하고, 확립된 분석방법을 적용하여 국내 유통 종이팩으로 포장된 식품 중 ITX 잔류량에 관한 모니터링을 실시하였다. HPLC/FLD를 이용한 ITX의 분석방법을 확립하였으며, 이때 확립된 분석방법에 대한 상대표준편차 1.09% 이내의 재현성, 상관계수 0.9991 이상의 직선성, 검출한계 0.02 ppb 및 정량한계는 0.1 ppb였다. 또한, 확립된 분석방법을 적용하여 국내 유통 중인 우유, 주스 등 종이팩으로 포장된 제품 87종을 대상으로 ITX 잔류량을 모니터링 한 결과, 모든 식품에서 ITX는 검출되지 않았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.