• Title/Summary/Keyword: polymeric precursor

Search Result 52, Processing Time 0.024 seconds

Synthesis of KIT-1 Mesoporous Silicates Showing Two Different Macrosporous Strucrtues; Inverse-opal or Hollow Structures (거대기공 구조-역오팔 또는 중공 구조를 갖는 KIT-1 메조포러스 실리케이트의 제조)

  • Baek, Youn-Kyoung;Lee, Jung-Goo;Kim, Young Kuk
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • We report a facile method for preparing KIT-1 mesoporous silicates with two different macroporous structures by dual templating. As a template for macropores, polystyrene (PS) beads are assembled into uniform three dimensional arrays by ice templating, i.e., by growing ice crystals during the freezing process of the particle suspension. Then, the polymeric templates are directly introduced into the precursor-gel solution with cationic surfactants for templating the mesopores, which is followed by hydrothermal crystallization and calcination. Later, by burning out the PS beads and the surfactants, KIT-1 mesoporous silicates with macropores are produced in a powder form. The macroporous structures of the silicates can be controlled by changing the amount of EDTANa4 salt under the same templating conditions using the PS beads and inverse-opal or hollow structures can be obtained. This strategy to prepare mesoporous powders with controllable macrostructures is potentially useful for various applications especially those dealing with bulky molecules such as, catalysis, separation, drug carriers and environmental adsorbents.

Continuous Nanocomposite Coatings on a Phosphor for the Enhancement of the Long-term Stability

  • Kim, Jong-Woung;Song, Jung-Oh;Kim, Chang-Keun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.233-233
    • /
    • 2006
  • [ $Y_{2}O_{2}S:Eu$ ], a red phosphor, coated with silica nanoparticles or nanocomposites composed of silica nanoparticles and polymeric materials such as PMMA and PVP was prepared via sol-gel process. Samples were prepared from four different methods coded P1, P2, P3, and P4. P1 includes a conventional sol-gel process and a dip-coating method while P2 has the same procedure with P1 except that nanocomposites containing both silica nanoparticles and polymer prepared by sol-gel process were used as coating materials. In P3 method, phosphors were dispersed in a solution containing silica precursor, i.e., TEOS and then polymerization was performed to coat onto the phosphors surface while P4 followed the same procedure with P3 except that a solution containing both TEOS and organic monomer were used in preparing coating materials. Among various coating methods examined in this study, uniform coating of phosphor could be achieved by using method P4, i.e., phosphor surface coating in a solution containing hydrophobic monomer and TEOS. Furthermore, $Y_{2}O_{2}S:Eu$ red phosphor coated with nanocomposite composed of PMMA matrix and silica nanoparticles exhibited enhanced PL intensity and long-term stability.

  • PDF

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Nano-sized $Gd_{2}O_{3}:Eu$ phosphor particles of high brightness

  • Lee, Chang-Hee;Roh, Hyun-Sook;Kang, Yun-Chan;Park, Hee-Dong;Park, Seung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.791-794
    • /
    • 2003
  • To synthesize $Gd_{2}O_{3}:Eu$ phosphor powder of nano size and high luminescence efficiency under UV (ultraviolet) and VUV (vacuum ultraviolet) light, organic additives such as citric acid and ethylene glycol and $Na_{2}CO_{3}$ flux were introduced in large-scale spray pyrolysis and critical conditions for forming nano-sized particles were investigated. The $Gd_{2}O_{3}:Eu$ phosphor particles prepared from solutions with organic additives such as citric acid and ethylene glycol had micron size and spherical shape. However, the particles prepared from polymeric precursor solution with $Na_{2}CO_{3}$ flux had nano size and non-aggregation characteristics. The as-prepared spherical particles with micron size turned into nano-sized particles during post-treatment by recrystallization process. The nano-sized $Gd_{2}O_{3}:Eu$ phosphor particles showed higher brightness than the commercial $Y_2O_3:Eu$ phosphor product under both UV light of 254nm and VUV light of 147 nm.

  • PDF

Synthesis of $Y_2O-# : Eu$ Added the Group 1 or 2 Elements Using Complex-Polymerization and its Luminescent Properities (착제중합법에 의한 1, 2족 원소가 $Y_2O-# : Eu$ 형광체의 합성광 발광특성)

  • Park, Sang Mi;Kim, Chang Hae;Park, Joung Kyu;Park, Hee Dong;Jang, Ho G.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.236-241
    • /
    • 2001
  • Europium activated yttrium oxide ($Y_2O_3$ : Eu) is extensively applied to red phosphor for Flat Panel Display because of its high efficiency and the thermal and chemical stability. Flat Panel Display screen which have a high resolution and high efficiency needs to the phosphors of ideally small size spherical particle. In this study, we prepared a $Y_2O_3$ : Eu phosphor using polymeric precursor methods and investigated the codoping effect by introducing the group 1 or 2 elements to $Y_2O_3$ : Eu phosphor in view of improvement of luminance efficiency.

  • PDF

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

Enhanced Corrosion Protection Performance by Novel Inhibitor-Loaded Hybrid Sol-Gel Coatings on Mild Steel in 3.5% NaCl Medium

  • Suleiman, Rami K.
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.168-174
    • /
    • 2019
  • The sol-gel methodology has been applied successfully in the synthesis of a novel hybrid coating based on dimethoxymethyl-n-octadecylsilane precursor. The newly synthesized parent coating was functionalized further with two commercially-available corrosion-inhibitive pigments Moly-$white^{(R)}$ 101-ED and Hfucophos $Zapp^{(R)}$, applied to mild steel panels, and immersed continuously in 3.5% NaCl electrolytic solution for 288 h. The corrosion protection performance of the prepared functional coatings was evaluated using electrochemical impedance spectroscopy (EIS) and DC polarization techniques. An enhancement in the barrier properties has been revealed from the electrochemical characterization data of the hybrid films, in comparison with untreated mild steel substrates following long-term immersion in 3.5% NaCl. The corrosion resistance properties of the newly developed coatings over mild steel substrates found to be largely dependent on the type of the loaded inhibitive pigment in which the Moly-white inhibitor has a positive impact on the corrosion protection performance of the parent coating, while an opposite behavior was observed upon mixing the base polymeric matrix with the commercially-available Zapp corrosion inhibitor.

Three-dimensional MXene (Ti3C2Tx) Film for Radionuclide Removal From Aqueous Solution

  • Jang, Jiseon;Lee, Dae Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.379-379
    • /
    • 2018
  • MXenes are a new family of 2D transition metal carbide nanosheets analogous to graphene (Lv et al., 2017; Sun et al., 2018). Due to the easy availability, hydrophilic behavior, and tunable chemistry of MXenes, their use in applications for environmental pollution remediation such as heavy metal adsorption has recently been explored (Li et al., 2017). In this study, three-dimensional (3D) MXene ($Ti_3C_2T_x$) films with high adsorption capacity, good mechanical strength, and high selectivity for specific radionuclide from aquose solution were successfully fabricated by a polymeric precursor method using vacuum-assisted filtration. The highest removal efficiency on the films was 99.54%, 95.61%, and 82.79% for $Sr^{2+}$, $Co^{2+}$, and $Cs^+$, respectively, using a film dosage of 0.06 g/ L in the initial radionuclide solution (each radionuclide concentration = 1 mg/L and pH = 7.0). Especially, the adsorption process reached an equilibrium within 30 min. The expanded interlayer spacing of $Ti_3C_2T_x$ sheets in MXene films showed excellent radionuclide selectivity ($Cs^+$ and/or $Sr^{2+}/Co^{2+}$) (Simon, 2017). Besides, the MXene films was not only able to be easily retrieved from an aqueous solution by filtration after decontamination processes, but also to selectively separate desired target radionuclides in the solutions. Therefore, the newly developed MXene ($Ti_3C_2T_x$) films has a great potential for radionuclide removal from aqueous solution.

  • PDF

Surface modified ceramic fiber separators for thermal batteries

  • Cheong, Hae-Won;Ha, Sang-Hyeon;Choi, Yu-Song
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.308-311
    • /
    • 2012
  • A wide range of possible hazards existing in thermal batteries are mainly caused by thermal runaway, which results in overheating or explosion in extreme case. Battery separators ensure the separation between two electrodes and the retention of ion-conductive electrolytes. Thermal runaways in thermal batteries can be significantly reduced by the adoption of these separators. The high operating temperature and the violent reactivity in thermal batteries, however, have limited the introduction of conventional separators. As a substitute for separators, MgO powders have been mostly used as a binder to hold molten salt electrolyte. During recent decades the fabrication technology of ceramic fiber, which has excellent mechanical strength and chemical stability, has undergone significant improvement. In this study we adopted wet-laid nonwoven paper making method instead of the electrospinning method which is costly and troublesome to produce in volume. Polymeric precursor can readily be coated on the surface of wet-laid ceramic paper, and be formed into ceramic film after heat treatment. The mechanical strength and the thermo-chemical stability as well as the wetting behaviors of ceramic separators with various molten salts were investigated to be applicable to thermal batteries. Due to their excellent chemical, mechanical, and electrical properties, wet-laid nonwoven separators made from ceramic fibers have revealed positive possibility as new separators for thermal batteries which operate at high temperature with no conspicuous sign of a short circuit and corrosion.

A preparation of hexacelsian powder by solution-polymerization route and its phase transformation behavior (Solution- polymerization 방법에 의한 hexacelsian 분말의 합성 및 상전이 공정에 의한 celsian 소결체의 제조)

  • Sang-Jin Lee;Young-Soo Yoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.428-436
    • /
    • 1997
  • Hexacelsian ($BaO{\cdot}Al_2O_3{\cdot}2SiO_2$) powder was prepared by a solution-polymerization route employing PVA solution as a polymeric carrier. A fine amorphous-type hexacelsian powder with an average particle size of 0.8 $\mu \textrm{m}$ and a BET specific surface area of $63 \textrm{m}^2$/g was made by a ball-milling the powder precursor for 12 h after calcination at $800^{\circ}C$ for :1 h. A densified hexacelsian was obtained through sintering at $1550^{\circ}C$ for 2 h under an air atmosphere. The $\alpha\longleftrightarrow\beta$ and $\beta\longleftrightarrow\gamma$ displacive phase transformation in polycrystalline hexacelsia,n was examined by using dilatometry and differential scanning calorimtry. The reconstructive transformation between hexacelsian and celsian was obtained by annealing at $1600^{\circ}C$ for 72h. Volume contraction of 5.6% was accompanied by the reconstructive transformation.

  • PDF