Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.5.168

Enhanced Corrosion Protection Performance by Novel Inhibitor-Loaded Hybrid Sol-Gel Coatings on Mild Steel in 3.5% NaCl Medium  

Suleiman, Rami K. (Center of Research Excellence in Corrosion (CoRE-C), King Fahd University of Petroleum & Minerals (KFUPM))
Publication Information
Corrosion Science and Technology / v.18, no.5, 2019 , pp. 168-174 More about this Journal
Abstract
The sol-gel methodology has been applied successfully in the synthesis of a novel hybrid coating based on dimethoxymethyl-n-octadecylsilane precursor. The newly synthesized parent coating was functionalized further with two commercially-available corrosion-inhibitive pigments Moly-$white^{(R)}$ 101-ED and Hfucophos $Zapp^{(R)}$, applied to mild steel panels, and immersed continuously in 3.5% NaCl electrolytic solution for 288 h. The corrosion protection performance of the prepared functional coatings was evaluated using electrochemical impedance spectroscopy (EIS) and DC polarization techniques. An enhancement in the barrier properties has been revealed from the electrochemical characterization data of the hybrid films, in comparison with untreated mild steel substrates following long-term immersion in 3.5% NaCl. The corrosion resistance properties of the newly developed coatings over mild steel substrates found to be largely dependent on the type of the loaded inhibitive pigment in which the Moly-white inhibitor has a positive impact on the corrosion protection performance of the parent coating, while an opposite behavior was observed upon mixing the base polymeric matrix with the commercially-available Zapp corrosion inhibitor.
Keywords
Sol-gel; Coatings; Mild steel; Inhibitor; Impedance spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Potgieter, P.A. Olubambi, L. Cornish, C. N. Machio, and E. S. M. Sherif, Corros. Sci., 50, 2572 (2008).   DOI
2 M. Qian, A. M. Soutar, X. H. Tan, X. T. Zeng, and S. L. Wijesinghe, Thin Solid Films, 517, 5237 (2009).   DOI
3 C. Chang, C. Wang, C. Wu, S. Liu, and F. Mai, J. Appl. Surf. Sci., 255, 1531 (2008).   DOI
4 R. Suleiman, A. Khalil, M. Khaled, and B. El Ali, Marine Coatings and Membranes, 1st ed., p. 86, Central West Publishing, Australia (2019).
5 R. Suleiman, M. Estaitie, and M. Mizanurahman, J. Appl. Polym. Sci., 133, (2016).
6 R. Suleiman, M. Mizanurrahman, N. Alfaifi, B. El Ali, and R. Akid, Corros. Eng. Sci. Technol., 48, 525 (2013).   DOI
7 R. Suleiman, M. Khaled, H. Wang, J. Gittens, T. Smith, R. Akid, B. El Ali, and A. Khalil, Corros. Eng. Sci. Technol., 49, 189 (2014).   DOI
8 H. Wang and R. Akid, Corros. Sci., 49, 4491 (2007).   DOI
9 T. L. Metroke, R. L. Parkhill, and E. T. Knobbe, Prog. Org. Coat., 41, 233 (2001).   DOI
10 R. Suleiman, J. Gittens, M. Khaled, T. J. Smith, R. Akid, B. El Ali, and A. Khalil, Arab. J. Sci. Eng., 42, 4327 (2017).   DOI
11 R. K. Suleiman, A. M. Kumar, A. A. Sorour, F. A. Al-Badour, and B. El Ali, J. Appl. Polym. Sci., 135, 46718 (2018).   DOI
12 N. P. Tavandashti, S. Sanjabi, and T. Shahrabi, Mater. Corros., 62, 411 (2011).   DOI
13 V. Moutarlier, B. Neveu, and M. P. Gigandet, Surf. Coat. Technol., 202, 2052 (2008).   DOI
14 R. K. Suleiman, T. A. Saleh, O. C. S. Al Hamouz, M. B. Ibrahim, A. A. Sorour, and B. El Ali, Surf. Coat. Technol., 324, 526 (2017).   DOI