Browse > Article
http://dx.doi.org/10.12989/sem.2009.33.4.429

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method  

Vorel, Jan (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague)
Sejnoha, Michal (Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Centre for Integrated Design of Advances Structures)
Publication Information
Structural Engineering and Mechanics / v.33, no.4, 2009 , pp. 429-446 More about this Journal
Abstract
Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.
Keywords
carbon-carbon composites; multi-scale analysis; Mori-Tanaka method; optimization; porous materials;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka theory in composite materials",Mech. Mater., 6, 147-157   DOI   ScienceOn
2 Benveniste, Y., Chen, T. and Dvorak, G. (1990), "The effective thermal conductivity of composites reinforced by coated cyllindrically orthotropic fibers", J. Appl. Phys., 67(6), 2878-2884   DOI
3 Chen, T. and Yang, S.H. (1995), "The problem of thermal conduction for two ellipsoidal inhomogeneities in an anisotropic medium and its relevance to composite materials", Acta Mech., 111, 41-58   DOI   ScienceOn
4 Dvorak, G. and Sejnoha, M. (1996), "Initial failure maps for ceramic and metal matrix composites", Model. Simul. Mater. Sci. Eng., 4, 553-580   DOI   ScienceOn
5 Eshelby, J. (1957), "The determination of the elastic field of an ellipsoidal inclusion and related problems", Proc. Royal Soc., Series A, 241, 376-396   DOI
6 Gommers, B., Verpoest, I. and Van Houtte, P. (1998), "The Mori-Tanaka method applied to textile composite materials", Acta Mater., 46(6), 2223-2235   DOI   ScienceOn
7 Hatta, H. and Taya, M. (1986), "Equivalent inclusion method for steady state heat conduction in composites", Int. J. Eng. Sci., 24, 1159-1170   DOI   ScienceOn
8 Hellmich, C. and Ulm, F.J. (2005), "Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanical investigation", Transport. Porous Med., 58, 243-268   DOI   ScienceOn
9 Huysmans, G., Verpoest, I. and Van Houtte, P. (1998), "A poly-inclusion approach for the elastic modelling of knitted fabric composites", Acta Mater., 46(9), 3003-3013   DOI   ScienceOn
10 Jeong, H., Hsu, D. and Liaw, P. (1998), "Anisotroic conductivities of multiphase particulate metal-matrix composites", Compos. Sci. Technol., 58, 65-76   DOI   ScienceOn
11 Kanari, M., Tanaka, K., Baba, S. and Eto, M. (1997), "Nanoindentation behavior of a two-dimensional carboncarbon composite for nuclear applications", Carbon, 35(10-11), 1429-1437   DOI   ScienceOn
12 Košková, B. and Vopi ka, S. (2001), "Determination of yarn waviness parameters for C/C woven composites", in: Proceedings of International Conference CARBON '01, Lexington (KY, USA), 1-6
13 Kubi ár, L., Bohá , V. and Vretenár, V. (2002), "Transient methods for the measurement of thermophysical properties: The pulse transient method", High Temp. - High Pressures, 34, 505-514   DOI   ScienceOn
14 Kuhn, J.L. and Charalambides, P.G. (1999), "Modeling of plain weave fabric composite geometry", J. Compos. Mater., 33(3), 188-220   ScienceOn
15 Lackner, R., Spiegl, M., Blab, R. and Eberhardsteiner, J. (2005), "Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? - arguments from multiscale analysis", J. Mater. Civil Eng., ASCE, 15, 485-491
16 Piat, R., Tsukrov, I., Mladenov, N., Guellali, M., Ermel, R., Beck, E. and Hoffman, M. (2007), "Material modeling of the CVI-infiltrated carbon felt II. Statistical study of the microstructure, numerical analysis and experimental validation", Compos. Sci. Technol., 66(15), 2769-2775   DOI   ScienceOn
17 LIM, System Lucia G, User guide, LUCIA - Laboratory Universal Computer Image Analysis, http://www.laboratory-imaging.com
18 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21, 571-574   DOI   ScienceOn
19 Ohlhorst, C.W. (1997), Thermal Conductivity Database of Various Strutural Carbon Carbon Composite Materials, NASA Technical Memorandum 4787, Lanley Research Center, Hampton, Virginia
20 Piat, R., Tsukrov, I., Mladenov, N., Verijenko, M., Guellali, M., Schnack, E. and Hoffman, M. (2007), "Material modeling of the CVI-infiltrated carbon felt I. Basic formulae, theory and numerical experiments", Compos. Sci. Technol., 66(15), 2997-3003   ScienceOn
21 Rektorys, K. (Ed.) (1994), Survey of Applicable Mathematics: Volume II, second revised Edition, Vol. 281 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht
22 Sko ek, J., Zeman, J. and Šejnoha, M. (2008), "Effective properties of Carbon-Carbon textile composites: application of the Mori-Tanaka method", Model. Simul. Mater. Sci. Eng., (accepted)   DOI   ScienceOn
23 Tomková, B. (2004), Study of porous structure of C/C composites, in: International Conference ICAPM, Evora,Portugal, 379-387
24 Tomková, B. and Košková, B. (2004), "The porosity of plain weave C/C composite as an input parameter for evaluation of material properties", in: International Conference Carbon 2004, Providence, USA, 50
25 Vopi ka, S. (2004), Popis geometrie vyztužujícího systému v tkaninových kompozitech [Description of geometry of textile composites reinforcing system], Ph.D. thesis, Technical University of Liberec, in Czech
26 Tomková, B., Šejnoha, M., Novák, J. and Zeman, J. (2008), "Evaluation of effective thermal conductivities of porous textile composites", Int. J. Multiscale Comput. Eng., 6(2), 153-168   DOI
27 TORAYCA, Technical Data Sheet, Toroyca T800H, Toray Carbon Fibers America, http://www.torayusa.com
28 Tsukrov, I., Piat, R., Novak, J. and Schnack, E. (2005), "Micromechanical modeling of porous carbon/carbon composites", Mech. Adv. Mater. Struct., 12, 43-54   DOI   ScienceOn
29 Zeman, J. and Šejnoha, M. (2001), "Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix", J. Mech. Phys. Solids, 49(1), 69-90   DOI   ScienceOn
30 Zeman, J. and Šejnoha, M. (2004), "Homogenization of balanced plain weave composites with imperfect microstructure: Part I - theoretical formulation", Int. J. Solids Struct., 41(22-23), 6549-6571   DOI   ScienceOn
31 Šejnoha, M. and Zeman, J. (2002), "Overall viscoelastic response of random fibrous composites with statistically quasi uniform distribution of reinforcements", Comput. Meth. Appl. Mech. Eng., 191(44), 5027-5044   DOI   ScienceOn
32 Šejnoha, M. and Zeman, J. (2008), "Micromechanical modeling of imperfect textile composites", Int. J. Eng. Sci., 46, 513-526   DOI   ScienceOn
33 Šejnoha, M., Valenta, R. and Zeman, J. (2004), "Nonlinear viscoelastic analysis of statistically homogeneous random composites", Int. J. Multiscale Comput. Eng., 2(4), 645-673   DOI
34 Šmilauer, V. and Bittnar, Z. (2006), "Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste", Cement Concrete Res., 36(9), 1708-1718   DOI   ScienceOn