• 제목/요약/키워드: polymeric gate insulator

검색결과 11건 처리시간 0.021초

Effects of Self-assembled Monolayer on PVP Gate Insulator for Organic Thin Film Transistors

  • Jang, Sun-Pil;Park, J.H.;Choi, J.S.;Ko, K.Y.;Sung, M.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1044-1045
    • /
    • 2004
  • In this work, the characteristics of organic thin film transistors (OTFTs) with self-assembled monolayers (SAMs) on polymeric gate insulator have been investigated. The SAMs were formed using atomic layer deposition (ALD) method onto gate insulator. Upon the investigations, it was observed that SAMs modify the wettability of polymeric insulator and influence the growth of subsequent organic semiconductor, and thereby, electric conductivity and roughness of the pentacene film are improved.

  • PDF

유기 절연층에 따른 유기 TFT 특성 연구 (Study on the Characteristics of Organic TFT Using Organic Insulating Layer Efficiency)

  • 표상우;이민우;손병천;김영관
    • 한국응용과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.335-338
    • /
    • 2002
  • A new process for polymeric gate insulator in field-effect transistors was proposed. Fourier transform infrared absorption spectra were measured in order to identify ODPA-ODA polyimide. Its breakdown field and electrical conductivity were measured. All-organic thin-film transistors with a stacked-inverted top-contact structure were fabricated to demonstrate that thermally evaporated polyimide films could be used as a gate insulator. As a result, the transistor performances with evaporated polyimide was similar with spin-coated polyimide. It seems that the mass-productive in-situ solution-free processes for all-organic thin-film transistors are possible by using the proposed method without vacuum breaking.

Photoinitiator-free Photosensitive Polyimide Gate Insulator for Organic Thin Film Transistor

  • Pyo, Seung-Moon;Lee, Moo-Yeol;Jeon, Ji-Hyun;Son, Hyun-Sam;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.885-888
    • /
    • 2004
  • We have prepared and investigated the properties of photoinitiator-free photosensitive polyimide gate insulatos for organic thin-film transistors (OTFTs). The precursor was prepared from a dianhydride, 3,3',4,4'-Benzophenone tetracarboxylic dianhydride (BTDA) and novel aromatic diamine, 7-(3,5-diaminobenzoyloxy) coumarine (DA-CM). Photo-patternability of the polyimide precursor film and surface morphology of the films before and after photo-patterning process were investigated and negative pattern with a resolution of 50 ${\mu}m$ was obtained nicely. In addition, we have fabricated OTFTs with pentacene and photosensitive polyimide as a semiconductor and a gate insulator; respectively. According to the device geometry, the ${\mu}$, current modulation ratio and subthreshold swing of the devices were around 0.2${\sim}$0.4 $cm^2$/Vs, more than $10^5$ and around 3${\sim}$5 V/dec, respectively.

  • PDF

Effects of processing temperature and optical anisotropy of a polymeric insulator on organic thin-film transistors

  • Bae, Jin-Hyuk;Kim, Won-Ho;Na, Jun-Hee;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1107-1110
    • /
    • 2006
  • We investigate the effect of processing temperature of gate insulator and optical anisotropy on organic thin-film transistors (OTFTs). The insulator film which was processed lower temperature than solvent boiling temperature can lead more aligned pentacne molecules compare to higher processed insulator film. It finally gives rise to the big increase of carrier mobility in OTFTs, although there are little difference at the seriously affecting properties to device performance, for example roughness of gate insulator film.

  • PDF

고유전율 절연체를 활용한 저 전압 유연 유기물 박막 트랜지스터 (Low-voltage Organic Thin-film Transistors with Polymeric High-k Gate Insulator on a Flexible Substrates)

  • 김재현;배진혁;이인호;김민회
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.165-168
    • /
    • 2015
  • We demonstrated low-voltage organic thin-film transistors (OTFTs) with bilayer insulators, high-k polymer and low temperature crosslinkable polymer, on a flexible plastic substrate. Poly (vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) and poly (2-vinylnaphthalene) are used for high-k polymer gate insulator and low temperature crosslinkable polymer insulators, respectively. The mobility of flexible OTFTs is $0.17cm^2/Vs$ at gate voltages -5 V after bending operation.

게이트 절연막에 사용된 점착층에 대한 영향 (Effect of Adhesion Layer on Gate Insulator)

  • 이동현;형건우;표상우;김영관
    • 한국전기전자재료학회논문지
    • /
    • 제19권4호
    • /
    • pp.357-361
    • /
    • 2006
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4'-oxydianiline. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2/Vs$, threshold voltage of -0.8 V and on-off current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

OTFT의 게이트 절연막에 사용된 점착층에 대한 영향 (The Effect of Adhesion layer on Gate Insulator for OTFTs)

  • 이동현;형건우;표상우;김정수;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.70-71
    • /
    • 2005
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 6FDA and ODA. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2$/Vs, threshold voltage of -0.8 V and on-of current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

  • PDF

An Organic Electrophosphorescent Device Driven by All-Organic Thin-Film Transistor using Polymeric Gate Insulator

  • Pyo, S.W.;Shim, J.H.;Kim, Y.K.
    • Journal of Information Display
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we demonstrate that the organic electrophosphorescent device is driven by the organic thin film transistor with spin-coated photoacryl gate insulator. It was found that electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure showed the non-saturated slope in the saturation region and the sub-threshold nonlinearity in the triode region, where we obtained the maximum power luminance that was about 90 $cd/m^2$. Field effect mobility, threshold voltage, and on-off current ratio in 0.45 ${\mu}m$ thick gate dielectric layer were 0.17 $cm^2/Vs$, -7 V, and $10^6$ , respectively. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and cured at 150${\sqsubset}$for 1hr. It was also found that field effect mobility, threshold voltage, on-off current ratio, and sub-threshold slope with 0.45 ${\mu}m$ thick gate dielectric films were 0.134 $cm^2/Vs$, -7 V, and $10^6$ A/A, and 1 V/decade, respectively.

고분자막을 점착층으로 사용한 유기 박막 트랜지스터의 안정성 (Stability of Organic Thin-Film Transistors Fabricated by Inserting a Polymeric Film)

  • 형건우;표상우;김준호;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.61-62
    • /
    • 2006
  • In this paper, it was demonstrated that organic thin- film transistors (OTFTs) were fabricated with the organic adhesion layer between an organic semiconductor and a gate insulator by vapor deposition polymerization (VDP) processing. In order to form polymeric film as an adhesion layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. The saturated slop in the saturation region and the subthreshold nonlinearity in the triode region were c1early observed in the electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure. Field effect mobility, threshold voltage, and on-off current ratio in 15-nm-thick organic adhesion layer were about $0.5\;cm^2/Vs$, -1 V, and $10^6$, respectively. We also demonstrated that threshold voltage depends strongly on the delay time when a gate voltage has been applied to bias stress.

  • PDF

용액 공정 고분자 게이트 절연체를 이용한 Top-Gate 펜타센 박막 트랜지스터에 관한 연구 (Study on the Top-Gate Pentacene Thin Film ransistors Using Solution Processing Polymeric Gate Insulator)

  • 형건우;김준호;서지훈;구자룡;서지현;박재훈;정용우;김유현;김우영;김영관
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.388-394
    • /
    • 2008
  • 본 논문에서는 용액 공정을 이용한 고분자 절연층을 갖는 top-gate 구조의 펜타센 박막 트랜지스터(Thin Film Transistor, TFT)의 특성을 연구하였다. Top-gate 구조의 펜타센 TFT 제작에 앞서 유기 반도체인 펜타센의 결정성 성장을 돕기 위해서 가교된 PVP (cross-linked poly(4-vinylphenol))를 유리 기판 상에 스핀 코팅을 이용하여 형성한 후, 노광 공정을 통해 니켈/은 구조를 갖는 채널 길이 $10{\mu}m$의 소오스, 드레인 전극을 형성하였다. 그리고 열 증착을 이용하여 60 nm 두께의 펜타센 층을 성막하였고, 고분자 절연체로서 PVA(polyvinyl alchol) 또는 가교된 PVA를 용액공정인 스핀 코팅을 이용하여 형성한 후 열 증착으로 알루미늄 게이트 전극을 성막하였다. 이로써 제작된 소자들의 전기적 특성을 확인한 결과 가교된 PVA를 사용한 펜타센 TFT 보다 PVA를 게이트 절연체로 사용한 소자가 전기적 특성이 우수한 것으로 관찰되었다. 이는 PVA의 가교 공정에 의한 펜타센 박막의 성능 퇴화에 기인한 것으로 사료된다. 실험 결과 $0.9{\mu}m$ 두께의 PVA 게이트 절연막을 사용한 top-gate 구조의 펜타센 TFT의 전계 효과 이동도와 문턱전압, 그리고 전류 점멸비는 각각, 약 $3.9{\times}10^{-3}\;cm^2/Vs$, -11.5 V, $3{\times}10^5$으로써 본 연구에서 제안된 소자가 용액 공정형 top-gate 유기 TFT 소자로서 우수한 성능을 나타냄을 알 수 있었다.