• Title/Summary/Keyword: polymer spring

Search Result 40, Processing Time 0.023 seconds

Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

  • Keshtegar, Behrooz;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.195-207
    • /
    • 2018
  • First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton's principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.

3D Numerical Simulation of Pullout Behavior of FRP Embedded in Concrete using RBSN Method (RBSN 방법을 사용한 콘크리트에 삽입된 FRP rod의 Pull-out거동의 3D 수치 Simulation)

  • Kim, Jang-Ho;Li, Jing;Tran, Tuan Kiet;Hong, Jong-Suk;Kim, Yun-Ho;Lee, Gyeong-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.365-368
    • /
    • 2006
  • RBSN Method, Rigid-Body-Spring Network Method, is a structural analysis method that overcomes the problems faced in FEM analysis of concrete or crack forming structures. In RBSN, irregular lattices are used to model structural components consisting of bulk material, curvilinear reinforcements, and their interfaces. Because reinforcements and their interfaces in the bulk material are freely positioned, meshing is irrespective of the geometry of the representing bulk material. In this paper, RBSN method of 3D is applied in simulating the pull-out test of FRP (Fiber Reinforced Polymer) embedded in concrete. The comparison of analysis results to experimental results shows that RBSN method simulates the shear-slip behavior very precisely. From the analysis results, 3D RBSN method is proven to be an effective and accurate analysis method for concrete structural analysis. Also, the results show that RBSN method can be a potential analysis method for concrete structures that can replace the current FEM analysis.

  • PDF

Stress Relaxation and Nonlinear Viscoelastic Model of PAN-PVC Copolymers (PAN-PVC 공중합체의 응력완화와 비선형 점탄성 모델)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • From the three element non-Newtonian model of one non-Newtonian viscoelastic Maxwell elements and a elastic spring, the stress relaxation equation was derived. The various model parameters of this equation were evaluated by appling the experimental results of stress relaxation to the stress relaxation equation. The theoretical curves calculated from this model parameters agreed with the experimental stress relaxation curves. From the parameters of nonlinear viscoelastic model, the hole volume, fine structure, viscoelastic properties and mechanical properties of polymer fibers were studied. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The stress relaxation curves of the two types polyacrylonitrile-polyvinylchloride copolymer and another two types PVC monofilament fibers were obtained in air and water of various temperatures.

Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces

  • Baek, Kyung Yup;Kim, Seohyun;Koh, Hye Ran
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

A Study on Hazards Assessment of Electrostatic Firing Explosion of Working Wears at LPG Stations in Korea (한국의 LPG 충전소에 있어서 작업복의 정전기에 의한 화재 및 폭발 위험성에 관한 연구)

  • Cho young doo;Koo Ja Hyeuk;Choi Kwang Seo;Seo Dae Won;Joung Jae Hee;Takeuchi Manabu
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.4 s.12
    • /
    • pp.20-24
    • /
    • 2000
  • The electrostatic safety consciousness of safety manager were investigated through questionnaires sent to liquid petroleum gas stations in Korea. In addition, hazards of fire and explosion due to electrostatic on synthetic-polymer-wears and cotton-wears were estimated experimentally. The results of questionnaires indicate most workers wear their working clothes indiscreetly owing to lack of knowledge of preventing electrostatic hazards. The amounts of electrostatic charge generated in synthetic-polymer-wears were 1.79, 1.44 and 1.02 $\mu$C in winter, spring and autumn and summer, respectively. All these values exceed the limit of working wears of 0.60$\mu$C requested by Korea Standard(KS K-7807) for preventing electrostatic hazards, which means hazards may occur. While, the charge in cotton-wears were in the range of 0.42 to 0.52$\mu$C, which suggests that the cotton-wears investigated in this study have no problem of hazards. Therefore workers, visual and experiential education are necessary for elevating the standard of on electrostatics. It is also necessary to establish standards of wearing for preventing electrostatic hazards.

  • PDF

Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat;Belkacem, Adim
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang;Sun, Li;Wang, Ke;Yuan, Yue;Wei, Minghai
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

Porosity-dependent vibration investigation of functionally graded carbon nanotube-reinforced composite beam

  • Abdulmajeed M. Alsubaie;Ibrahim Alfaqih;Mohammed A. Al-Osta;Abdelouahed Tounsi;Abdelbaki Chikh;Ismail M. Mudhaffar;Saeed Tahir
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This work utilizes simplified higher-order shear deformation beam theory (HSDBT) to investigate the vibration response for functionally graded carbon nanotube-reinforced composite (CNTRC) beam. Novel to this work, single-walled carbon nanotubes (SWCNTs) are distributed and aligned in a matrix of polymer throughout the beam, resting on a viscoelastic foundation. Four un-similar patterns of reinforcement distribution functions are investigated for the CNTRC beam. Porosity is another consideration taken into account due to its significant effect on functionally graded materials (FGMs) properties. Three types of uneven porosity distributions are studied in this study. The damping coefficient and Winkler's and Pasternak's parameters are considered in investigating the viscosity effect on the foundation. Moreover, the impact of different parameters on the vibration of the CNTRC beam supported by a viscoelastic foundation is discussed. A comparison to other works is made to validate numerical results in addition to analytical discussions. The findings indicate that incorporating a damping coefficient can improve the vibration performance, especially when the spring constant factors are raised. Additionally, it has been noted that the fundamental frequency of a beam increases as the porosity coefficient increases, indicating that porosity may have a significant impact on the vibrational characteristics of beams.