Browse > Article

Stress Relaxation and Nonlinear Viscoelastic Model of PAN-PVC Copolymers  

Kim, Nam-Jeong (Department of Chemistry, Sahmyook University)
Publication Information
Elastomers and Composites / v.45, no.4, 2010 , pp. 250-255 More about this Journal
Abstract
From the three element non-Newtonian model of one non-Newtonian viscoelastic Maxwell elements and a elastic spring, the stress relaxation equation was derived. The various model parameters of this equation were evaluated by appling the experimental results of stress relaxation to the stress relaxation equation. The theoretical curves calculated from this model parameters agreed with the experimental stress relaxation curves. From the parameters of nonlinear viscoelastic model, the hole volume, fine structure, viscoelastic properties and mechanical properties of polymer fibers were studied. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The stress relaxation curves of the two types polyacrylonitrile-polyvinylchloride copolymer and another two types PVC monofilament fibers were obtained in air and water of various temperatures.
Keywords
three element non-Newtonian model; stress relaxation equation; model parameters; tensile tester; polyacrylonitrile-polyvinylchloride copolymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. P. Privalko, S. M. Ponomarenko, E. G. Privalko, F. Schön, and W. Gronski, "Thermoelasticity and stress relaxation behavior of polychloroprene/organoclay nanocomposites", European Polymer Journal, 41, 3042 (2005).   DOI   ScienceOn
2 S. Kumar and V. B. Gupta, "A nonlinear viscoelastic model for textile fibers", Text. Res. J., 48, 429 (1978).   DOI   ScienceOn
3 S. Siengchin and J. K. Kocsis, "Mechanical and stress relaxation behavior of santroprene thermoplastic elastomer/boehmit alumina nanocomposites produced by water-mediated and direct melt compounding", Composites Part A: Applied Science and Manufacturing, 41, 768 (2010).   DOI   ScienceOn
4 N. J. Kim, E. R. Kim, and S. J. Hahn, "The rheological and mechanical model for relaxation spectra of polydisperse polymers", Bull. Korean Chem. Soc., 13, 413 (1992).
5 P. H. DeHoff and K. J. Anusavice, "Shear stress relaxation of dental ceramics determined from creep behavior", Dental Materials, 20, 717 (2004).   DOI   ScienceOn
6 R. K. June, S. Ly and D. P. Fyhrie, "Cartilage stress relaxation proceeds slower at higher compressive strains", Archives of Biochemistry and Biophysics, 483, 75 (2009).   DOI   ScienceOn
7 C. Machiraju, A. V. Phan, A. W. Pearsall, and S. Madanagopal, "Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model", Computer Methods and Programs in Biomedicine, 83, 29 (2006).   DOI   ScienceOn
8 N. J. Kim, E. R. Kim, and S. J. Hahn, "Solvent effect on stress relaxation of PET filament fibers and self diffusion of crystallites", Bull. Korean Chem. Soc., 12, 468 (1991).
9 T. Kunugi, Y. Isobe, K. Kimura, Y. Asanuma, and M. Hashimoto, "Stress relaxation of oriented nylon 6 fibers", J. Appl. Polym. Sci., 24, 923 (1979).   DOI   ScienceOn
10 S. P. Mishra and B. L. Deopula, "Tie chains and modulus of nylon 6 fibers", J. Appl. Polym. Sci., 27, 3211 (1982).   DOI   ScienceOn
11 A. J. Owen and R. Bonart, "Cooperative relaxation processes in polymers", polymer, 26, 1034 (1985).   DOI   ScienceOn
12 K. W. Chase and W. Goldsmith, "Mechanical and optical characterization of anelastic polymer at large strain rates and large strains", Experimental Mechanics, 17, 10 (1974).
13 V. B. Gupta and S. Kumar, "A model for nonlinear creep of textile fibers", Text. Res. J., 47, 647(1977).
14 M. T. Abadi, "Micromechanical analysis of stress relaxation response of fiber-reinforced polymers", Composites Science and Technology, 69, 1286 (2009).   DOI   ScienceOn
15 T. O'D. Halsey and A. S. Krausz, "Thermally activated deformation. I. Method of analysis", J. Appl. Phy., 45, 2013 (1974).   DOI   ScienceOn
16 A. S. Krausz and H. Eyring, "Deformation Kinetics", John Wiley and sons, New York, 1975.
17 Z. H. Stachurski, "Micromechanics of stress relaxation in amorphous glassy PMMA. Part I. Molecular model for anelastic behaviour", Polymer, 43, 7419 (2002).   DOI   ScienceOn
18 S. A. Baeurle, A. Hotta, and A. A. Gusev, "A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers", Polymer, 46, 4344 (2005).   DOI   ScienceOn
19 M. Patel, P. R. Morrell, and J. J. Murphy, "Continuous and intermittent stress relaxation studies on foamed polysiloxane rubber", Polymer Degradation and Stability, 87, 201 (2005).   DOI   ScienceOn
20 H. H. Le, S. Ilisch, and H. J. Radusch, "Characterization of effect of the filler dispersion on the stress relaxation behavior of carbon black filled ruber composites", Polymer, 50, 2294 (2009).   DOI   ScienceOn