DOI QR코드

DOI QR Code

Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces

  • Received : 2021.12.22
  • Accepted : 2022.01.10
  • Published : 2022.01.31

Abstract

Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (2019R1C1C1004576) and the Chung-Ang University Research Grants in 2019.

References

  1. Albrecht, C., Blank, K., Lalic-Multhaler, M., Hirler, S., Mai, T., Gilbert, I., Schiffmann, S., Bayer, T., Clausen-Schaumann, H., and Gaub, H.E. (2003). DNA: a programmable force sensor. Science 301, 367-370. https://doi.org/10.1126/science.1084713
  2. Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770-776. https://doi.org/10.1126/science.284.5415.770
  3. Blakely, B.L., Dumelin, C.E., Trappmann, B., McGregor, L.M., Choi, C.K., Anthony, P.C., Duesterberg, V., Baker, B.M., Block, S.M., Liu, D.R., et al. (2014). A DNA-based molecular probe for optically reporting cellular traction forces. Nat. Methods 11, 1229-1232. https://doi.org/10.1038/nmeth.3145
  4. Brenner, M.D., Zhou, R.B., Conway, D.E., Lanzano, L., Gratton, E., Schwartz, M.A., and Ha, T. (2016). Spider silk peptide is a compact, linear nanospring ideal for intracellular tension sensing. Nano Lett. 16, 2096-2102. https://doi.org/10.1021/acs.nanolett.6b00305
  5. Butcher, D.T., Alliston, T., and Weaver, V.M. (2009). A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108-122. https://doi.org/10.1038/nrc2544
  6. Chang, J. (2021). MHC multimer: a molecular toolbox for immunologists. Mol. Cells 44, 328-334. https://doi.org/10.14348/molcells.2021.0052
  7. Clausen-Schaumann, H., Seitz, M., Krautbauer, R., and Gaub, H.E. (2000). Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4, 524-530. https://doi.org/10.1016/S1367-5931(00)00126-5
  8. Cui, B.X., Wu, C.B., Chen, L., Ramirez, A., Bearer, E.L., Li, W.P., Mobley, W.C., and Chu, S. (2007). One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. U. S. A. 104, 13666-13671. https://doi.org/10.1073/pnas.0706192104
  9. Discher, D.E., Janmey, P., and Wang, Y.L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139-1143. https://doi.org/10.1126/science.1116995
  10. Dogterom, M. and Yurke, B. (1997). Measurement of the force-velocity relation for growing microtubules. Science 278, 856-860. https://doi.org/10.1126/science.278.5339.856
  11. Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689. https://doi.org/10.1016/j.cell.2006.06.044
  12. Eroshkin, F.M. and Zaraisky, A.G. (2017). Mechano-sensitive regulation of gene expression during the embryonic development. Genesis 55, e23026. https://doi.org/10.1002/dvg.23026
  13. Essevaz-Roulet, B., Bockelmann, U., and Heslot, F. (1997). Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. U. S. A. 94, 11935-11940. https://doi.org/10.1073/pnas.94.22.11935
  14. Fisher, M.E. and Kolomeisky, A.B. (1999). The force exerted by a molecular motor. Proc. Natl. Acad. Sci. U. S. A. 96, 6597-6602. https://doi.org/10.1073/pnas.96.12.6597
  15. Galior, K., Liu, Y., Yehl, K., Vivek, S., and Salaita, K. (2016). Titin-based nanoparticle tension sensors map high-magnitude integrin forces within focal adhesions. Nano Lett. 16, 341-348. https://doi.org/10.1021/acs.nanolett.5b03888
  16. Gaub, B.M. and Muller, D.J. (2017). Mechanical stimulation of Piezo1 receptors depends on extracellular matrix proteins and directionality of force. Nano Lett. 17, 2064-2072. https://doi.org/10.1021/acs.nanolett.7b00177
  17. Goh, L.K., Huang, F.T., Kim, W., Gygi, S., and Sorkin, A. (2010). Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J. Cell Biol. 189, 871-883. https://doi.org/10.1083/jcb.201001008
  18. Goktas, M. and Blank, K.G. (2017). Molecular force sensors: from fundamental concepts toward applications in cell biology. Adv. Mater. Interfaces 4, 1600441. https://doi.org/10.1002/admi.201600441
  19. Harris, A.K., Wild, P., and Stopak, D. (1980). Silicone-rubber substrata - new wrinkle in the study of cell locomotion. Science 208, 177-179. https://doi.org/10.1126/science.6987736
  20. Hirata, H., Tatsumi, H., and Sokabe, M. (2008). Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J. Cell Sci. 121, 2795-2804. https://doi.org/10.1242/jcs.030320
  21. Hoffman, B.D., Grashoff, C., and Schwartz, M.A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316-323. https://doi.org/10.1038/nature10316
  22. Huse, M. (2017). Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679-690. https://doi.org/10.1038/nri.2017.74
  23. Jansen, K.A., Donato, D.M., Balcioglu, H.E., Schmidt, T., Danen, E.H.J., and Koenderink, G.H. (2015). A guide to mechanobiology: where biology and physics meet. Biochim. Biophys. Acta 1853(11 Pt B), 3043-3052. https://doi.org/10.1016/j.bbamcr.2015.05.007
  24. Jo, M.H., Cottle, W.T., and Ha, T. (2019). Real-time measurement of molecular tension during cell adhesion and migration using multiplexed differential analysis of tension gauge tethers. ACS Biomater. Sci. Eng. 5, 3856-3863. https://doi.org/10.1021/acsbiomaterials.8b01216
  25. Jurchenko, C., Chang, Y., Narui, Y., Zhang, Y., and Salaita, K.S. (2014). Integrin-generated forces lead to streptavidin-biotin unbinding in cellular adhesions. Biophys. J. 106, 1436-1446. https://doi.org/10.1016/j.bpj.2014.01.049
  26. Kuo, J.C. (2013). Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J. Cell. Mol. Med. 17, 704-712. https://doi.org/10.1111/jcmm.12054
  27. Levental, K.R., Yu, H.M., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F.T., Csiszar, K., Giaccia, A., Weninger, W., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906. https://doi.org/10.1016/j.cell.2009.10.027
  28. Li, H.Y., Zhang, C., Hu, Y.R., Liu, P.X., Sun, F., Chen, W., Zhang, X.H., Ma, J., Wang, W.X., Wang, L., et al. (2021). A reversible shearing DNA probe for visualizing mechanically strong receptors in living cells. Nat. Cell Biol. 23, 642-651. https://doi.org/10.1038/s41556-021-00691-0
  29. Liu, Y., Blanchfield, L., Ma, V.P.Y., Andargachew, R., Galior, K., Liu, Z., Evavold, B., and Salaita, K. (2016). DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl. Acad. Sci. U. S. A. 113, 5610-5615. https://doi.org/10.1073/pnas.1600163113
  30. Liu, Y., Galior, K., Ma, V.P.Y., and Salaita, K. (2017). Molecular tension probes for imaging forces at the cell surface. Acc. Chem. Res. 50, 2915-2924. https://doi.org/10.1021/acs.accounts.7b00305
  31. Liu, Y., Yehl, K., Narui, Y., and Salaita, K. (2013). Tension sensing nanoparticles for mechano-imaging at the living/nonliving interface. J. Am. Chem. Soc. 135, 5320-5323. https://doi.org/10.1021/ja401494e
  32. Ma, R., Kellner, A.V., Ma, V.P.Y., Su, H.Q., Deal, B.R., Brockman, J.M., and Salaita, K. (2019). DNA probes that store mechanical information reveal transient piconewton forces applied by T cells. Proc. Natl. Acad. Sci. U. S. A. 116, 16949-16954. https://doi.org/10.1073/pnas.1904034116
  33. Ma, V.P.Y., Liu, Y., Yehl, K., Galior, K., Zhang, Y., and Salaita, K. (2016). Mechanically induced catalytic amplification reaction for readout of receptor-mediated cellular forces. Angew. Chem. Int. Ed. Engl. 55, 5488-5492. https://doi.org/10.1002/anie.201600351
  34. Ma, V.P.Y. and Salaita, K. (2019). DNA nanotechnology as an emerging tool to study mechanotransduction in living systems. Small 15, e1900961.
  35. Mammoto, A., Mammoto, T., and Ingber, D.E. (2012). Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061-3073. https://doi.org/10.1242/jcs.093005
  36. Martinac, B. (2004). Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449-2460. https://doi.org/10.1242/jcs.01232
  37. Morimatsu, M., Mekhdjian, A.H., Adhikari, A.S., and Dunn, A.R. (2013). Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985-3989. https://doi.org/10.1021/nl4005145
  38. Murad, Y. and Li, I.T.S. (2019). Quantifying molecular forces with serially connected force sensors. Biophys. J. 116, 1282-1291. https://doi.org/10.1016/j.bpj.2019.02.027
  39. Neuman, K.C. and Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491-505. https://doi.org/10.1038/nmeth.1218
  40. Parsons, J.T., Horwitz, A.R., and Schwartz, M.A. (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633-643. https://doi.org/10.1038/nrm2957
  41. Pramanik, A. (2004). Ligand-receptor interactions in live cells by fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 5, 205-212. https://doi.org/10.2174/1389201043377002
  42. Reineck, P., Capelli, M., Lau, D.W.M., Jeske, J., Field, M.R., Ohshima, T., Greentree, A.D., and Gibson, B.C. (2017). Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale 9, 497-502. https://doi.org/10.1039/C6NR07834F
  43. Riesenberg, C., Iriarte-Valdez, C.A., Becker, A., Dienerowitz, M., Heisterkamp, A., Ngezahayo, A., and Torres-Mapa, M.L. (2020). Probing ligand-receptor interaction in living cells using force measurements with optical tweezers. Front. Bioeng. Biotechnol. 8, 598459. https://doi.org/10.3389/fbioe.2020.598459
  44. Roca-Cusachs, P., Conte, V., and Trepat, X. (2017). Quantifying forces in cell biology. Nat. Cell Biol. 19, 742-751. https://doi.org/10.1038/ncb3564
  45. Roy, P., Rajfur, Z., Pomorski, P., and Jacobson, K. (2002). Microscope-based techniques to study cell adhesion and migration. Nat. Cell Biol. 4, E91-E96. https://doi.org/10.1038/ncb0402-e91
  46. Stabley, D.R., Jurchenko, C., Marshall, S.S., and Salaita, K.S. (2012). Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9, 64-67. https://doi.org/10.1038/nmeth.1747
  47. Style, R.W., Boltyanskiy, R., German, G.K., Hyland, C., MacMinn, C.W., Mertz, A.F., Wilen, L.A., Xu, Y., and Dufresne, E.R. (2014). Traction force microscopy in physics and biology. Soft Matter 10, 4047-4055. https://doi.org/10.1039/c4sm00264d
  48. Uroz, M., Wistorf, S., Serra-Picamal, X., Conte, V., Sales-Pardo, M., Roca-Cusachs, P., Guimera, R., and Trepat, X. (2018). Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nat. Cell Biol. 20, 646-654. https://doi.org/10.1038/s41556-018-0107-2
  49. Vining, K.H. and Mooney, D.J. (2017). Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728-742. https://doi.org/10.1038/nrm.2017.108
  50. Vivier, E. and Malissen, B. (2005). Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Immunol. 6, 17-21. https://doi.org/10.1038/ni1153
  51. Vogel, V. and Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265-275. https://doi.org/10.1038/nrm1890
  52. Wang, N., Butler, J.P., and Ingber, D.E. (1993). Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260, 1124-1127. https://doi.org/10.1126/science.7684161
  53. Wang, X.F. and Ha, T. (2013). Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991-994. https://doi.org/10.1126/science.1231041
  54. Wang, X.F., Sun, J., Xu, Q., Chowdhury, F., Roein-Peikar, M., Wang, Y.X., and Ha, T. (2015). Integrin molecular tension within motile focal adhesions. Biophys. J. 109, 2259-2267. https://doi.org/10.1016/j.bpj.2015.10.029
  55. Wang, Y.L., LeVine, D.N., Gannon, M., Zhao, Y.C., Sarkar, A., Hoch, B., and Wang, X.F. (2018). Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging. Biosens. Bioelectron. 100, 192-200. https://doi.org/10.1016/j.bios.2017.09.007
  56. Wang, Y.X., Chang, J., Chen, K.D., Li, S., Li, J.Y.S., Wu, C.Y., and Chien, S. (2007). Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress. Proc. Natl. Acad. Sci. U. S. A. 104, 8875-8879. https://doi.org/10.1073/pnas.0703088104
  57. Woodside, M.T., Behnke-Parks, W.M., Larizadeh, K., Travers, K., Herschlag, D., and Block, S.M. (2006). Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl. Acad. Sci. U. S. A. 103, 6190-6195. https://doi.org/10.1073/pnas.0511048103
  58. Zhang, Y., Ge, C.H., Zhu, C., and Salaita, K. (2014). DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun. 5, 5167. https://doi.org/10.1038/ncomms6167