Browse > Article
http://dx.doi.org/10.14348/molcells.2022.2049

Molecular Tension Probes to Quantify Cell-Generated Mechanical Forces  

Baek, Kyung Yup (Department of Chemistry, Chung-Ang University)
Kim, Seohyun (Department of Chemistry, Chung-Ang University)
Koh, Hye Ran (Department of Chemistry, Chung-Ang University)
Abstract
Living cells generate, sense, and respond to mechanical forces through their interaction with neighboring cells or extracellular matrix, thereby regulating diverse cellular processes such as growth, motility, differentiation, and immune responses. Dysregulation of mechanosensitive signaling pathways is found associated with the development and progression of various diseases such as cancer. Yet, little is known about the mechanisms behind mechano-regulation, largely due to the limited availability of tools to study it at the molecular level. The recent development of molecular tension probes allows measurement of cellular forces exerted by single ligand-receptor interaction, which has helped in revealing the hitherto unknown mechanistic details of various mechanosensitive processes in living cells. Here, we provide an introductory overview of two methods based on molecular tension probes, tension gauge tether (TGT), and molecular tension fluorescence microscopy (MTFM). TGT utilizes the irreversible rupture of double-stranded DNA tether upon application of force in the piconewton (pN) range, whereas MTFM utilizes the reversible extension of molecular springs such as polymer or single-stranded DNA hairpin under applied pN forces. Specifically, the underlying principle of how molecular tension probes measure cell-generated mechanical forces and their applications to mechanosensitive biological processes are described.
Keywords
cellular forces; mechanobiology; molecular spring; molecular tension fluorescence microscopy; tension gauge tether; tension probes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Morimatsu, M., Mekhdjian, A.H., Adhikari, A.S., and Dunn, A.R. (2013). Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett. 13, 3985-3989.   DOI
2 Blakely, B.L., Dumelin, C.E., Trappmann, B., McGregor, L.M., Choi, C.K., Anthony, P.C., Duesterberg, V., Baker, B.M., Block, S.M., Liu, D.R., et al. (2014). A DNA-based molecular probe for optically reporting cellular traction forces. Nat. Methods 11, 1229-1232.   DOI
3 Chang, J. (2021). MHC multimer: a molecular toolbox for immunologists. Mol. Cells 44, 328-334.   DOI
4 Discher, D.E., Janmey, P., and Wang, Y.L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139-1143.   DOI
5 Eroshkin, F.M. and Zaraisky, A.G. (2017). Mechano-sensitive regulation of gene expression during the embryonic development. Genesis 55, e23026.   DOI
6 Albrecht, C., Blank, K., Lalic-Multhaler, M., Hirler, S., Mai, T., Gilbert, I., Schiffmann, S., Bayer, T., Clausen-Schaumann, H., and Gaub, H.E. (2003). DNA: a programmable force sensor. Science 301, 367-370.   DOI
7 Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch signaling: cell fate control and signal integration in development. Science 284, 770-776.   DOI
8 Butcher, D.T., Alliston, T., and Weaver, V.M. (2009). A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108-122.   DOI
9 Goktas, M. and Blank, K.G. (2017). Molecular force sensors: from fundamental concepts toward applications in cell biology. Adv. Mater. Interfaces 4, 1600441.   DOI
10 Galior, K., Liu, Y., Yehl, K., Vivek, S., and Salaita, K. (2016). Titin-based nanoparticle tension sensors map high-magnitude integrin forces within focal adhesions. Nano Lett. 16, 341-348.   DOI
11 Hoffman, B.D., Grashoff, C., and Schwartz, M.A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316-323.   DOI
12 Levental, K.R., Yu, H.M., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F.T., Csiszar, K., Giaccia, A., Weninger, W., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891-906.   DOI
13 Liu, Y., Galior, K., Ma, V.P.Y., and Salaita, K. (2017). Molecular tension probes for imaging forces at the cell surface. Acc. Chem. Res. 50, 2915-2924.   DOI
14 Ma, V.P.Y., Liu, Y., Yehl, K., Galior, K., Zhang, Y., and Salaita, K. (2016). Mechanically induced catalytic amplification reaction for readout of receptor-mediated cellular forces. Angew. Chem. Int. Ed. Engl. 55, 5488-5492.   DOI
15 Essevaz-Roulet, B., Bockelmann, U., and Heslot, F. (1997). Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. U. S. A. 94, 11935-11940.   DOI
16 Clausen-Schaumann, H., Seitz, M., Krautbauer, R., and Gaub, H.E. (2000). Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4, 524-530.   DOI
17 Cui, B.X., Wu, C.B., Chen, L., Ramirez, A., Bearer, E.L., Li, W.P., Mobley, W.C., and Chu, S. (2007). One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. U. S. A. 104, 13666-13671.   DOI
18 Dogterom, M. and Yurke, B. (1997). Measurement of the force-velocity relation for growing microtubules. Science 278, 856-860.   DOI
19 Fisher, M.E. and Kolomeisky, A.B. (1999). The force exerted by a molecular motor. Proc. Natl. Acad. Sci. U. S. A. 96, 6597-6602.   DOI
20 Goh, L.K., Huang, F.T., Kim, W., Gygi, S., and Sorkin, A. (2010). Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor. J. Cell Biol. 189, 871-883.   DOI
21 Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689.   DOI
22 Style, R.W., Boltyanskiy, R., German, G.K., Hyland, C., MacMinn, C.W., Mertz, A.F., Wilen, L.A., Xu, Y., and Dufresne, E.R. (2014). Traction force microscopy in physics and biology. Soft Matter 10, 4047-4055.   DOI
23 Riesenberg, C., Iriarte-Valdez, C.A., Becker, A., Dienerowitz, M., Heisterkamp, A., Ngezahayo, A., and Torres-Mapa, M.L. (2020). Probing ligand-receptor interaction in living cells using force measurements with optical tweezers. Front. Bioeng. Biotechnol. 8, 598459.   DOI
24 Roca-Cusachs, P., Conte, V., and Trepat, X. (2017). Quantifying forces in cell biology. Nat. Cell Biol. 19, 742-751.   DOI
25 Huse, M. (2017). Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679-690.   DOI
26 Hirata, H., Tatsumi, H., and Sokabe, M. (2008). Mechanical forces facilitate actin polymerization at focal adhesions in a zyxin-dependent manner. J. Cell Sci. 121, 2795-2804.   DOI
27 Jo, M.H., Cottle, W.T., and Ha, T. (2019). Real-time measurement of molecular tension during cell adhesion and migration using multiplexed differential analysis of tension gauge tethers. ACS Biomater. Sci. Eng. 5, 3856-3863.   DOI
28 Martinac, B. (2004). Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117, 2449-2460.   DOI
29 Harris, A.K., Wild, P., and Stopak, D. (1980). Silicone-rubber substrata - new wrinkle in the study of cell locomotion. Science 208, 177-179.   DOI
30 Stabley, D.R., Jurchenko, C., Marshall, S.S., and Salaita, K.S. (2012). Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9, 64-67.   DOI
31 Vining, K.H. and Mooney, D.J. (2017). Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728-742.   DOI
32 Vivier, E. and Malissen, B. (2005). Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Immunol. 6, 17-21.   DOI
33 Wang, X.F. and Ha, T. (2013). Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991-994.   DOI
34 Jansen, K.A., Donato, D.M., Balcioglu, H.E., Schmidt, T., Danen, E.H.J., and Koenderink, G.H. (2015). A guide to mechanobiology: where biology and physics meet. Biochim. Biophys. Acta 1853(11 Pt B), 3043-3052.   DOI
35 Wang, X.F., Sun, J., Xu, Q., Chowdhury, F., Roein-Peikar, M., Wang, Y.X., and Ha, T. (2015). Integrin molecular tension within motile focal adhesions. Biophys. J. 109, 2259-2267.   DOI
36 Wang, Y.X., Chang, J., Chen, K.D., Li, S., Li, J.Y.S., Wu, C.Y., and Chien, S. (2007). Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress. Proc. Natl. Acad. Sci. U. S. A. 104, 8875-8879.   DOI
37 Zhang, Y., Ge, C.H., Zhu, C., and Salaita, K. (2014). DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat. Commun. 5, 5167.   DOI
38 Jurchenko, C., Chang, Y., Narui, Y., Zhang, Y., and Salaita, K.S. (2014). Integrin-generated forces lead to streptavidin-biotin unbinding in cellular adhesions. Biophys. J. 106, 1436-1446.   DOI
39 Kuo, J.C. (2013). Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells. J. Cell. Mol. Med. 17, 704-712.   DOI
40 Brenner, M.D., Zhou, R.B., Conway, D.E., Lanzano, L., Gratton, E., Schwartz, M.A., and Ha, T. (2016). Spider silk peptide is a compact, linear nanospring ideal for intracellular tension sensing. Nano Lett. 16, 2096-2102.   DOI
41 Gaub, B.M. and Muller, D.J. (2017). Mechanical stimulation of Piezo1 receptors depends on extracellular matrix proteins and directionality of force. Nano Lett. 17, 2064-2072.   DOI
42 Mammoto, A., Mammoto, T., and Ingber, D.E. (2012). Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125, 3061-3073.   DOI
43 Murad, Y. and Li, I.T.S. (2019). Quantifying molecular forces with serially connected force sensors. Biophys. J. 116, 1282-1291.   DOI
44 Liu, Y., Blanchfield, L., Ma, V.P.Y., Andargachew, R., Galior, K., Liu, Z., Evavold, B., and Salaita, K. (2016). DNA-based nanoparticle tension sensors reveal that T-cell receptors transmit defined pN forces to their antigens for enhanced fidelity. Proc. Natl. Acad. Sci. U. S. A. 113, 5610-5615.   DOI
45 Wang, Y.L., LeVine, D.N., Gannon, M., Zhao, Y.C., Sarkar, A., Hoch, B., and Wang, X.F. (2018). Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging. Biosens. Bioelectron. 100, 192-200.   DOI
46 Li, H.Y., Zhang, C., Hu, Y.R., Liu, P.X., Sun, F., Chen, W., Zhang, X.H., Ma, J., Wang, W.X., Wang, L., et al. (2021). A reversible shearing DNA probe for visualizing mechanically strong receptors in living cells. Nat. Cell Biol. 23, 642-651.   DOI
47 Liu, Y., Yehl, K., Narui, Y., and Salaita, K. (2013). Tension sensing nanoparticles for mechano-imaging at the living/nonliving interface. J. Am. Chem. Soc. 135, 5320-5323.   DOI
48 Ma, R., Kellner, A.V., Ma, V.P.Y., Su, H.Q., Deal, B.R., Brockman, J.M., and Salaita, K. (2019). DNA probes that store mechanical information reveal transient piconewton forces applied by T cells. Proc. Natl. Acad. Sci. U. S. A. 116, 16949-16954.   DOI
49 Ma, V.P.Y. and Salaita, K. (2019). DNA nanotechnology as an emerging tool to study mechanotransduction in living systems. Small 15, e1900961.
50 Parsons, J.T., Horwitz, A.R., and Schwartz, M.A. (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633-643.   DOI
51 Woodside, M.T., Behnke-Parks, W.M., Larizadeh, K., Travers, K., Herschlag, D., and Block, S.M. (2006). Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl. Acad. Sci. U. S. A. 103, 6190-6195.   DOI
52 Pramanik, A. (2004). Ligand-receptor interactions in live cells by fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 5, 205-212.   DOI
53 Wang, N., Butler, J.P., and Ingber, D.E. (1993). Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260, 1124-1127.   DOI
54 Vogel, V. and Sheetz, M. (2006). Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7, 265-275.   DOI
55 Neuman, K.C. and Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491-505.   DOI
56 Reineck, P., Capelli, M., Lau, D.W.M., Jeske, J., Field, M.R., Ohshima, T., Greentree, A.D., and Gibson, B.C. (2017). Bright and photostable nitrogen-vacancy fluorescence from unprocessed detonation nanodiamond. Nanoscale 9, 497-502.   DOI
57 Roy, P., Rajfur, Z., Pomorski, P., and Jacobson, K. (2002). Microscope-based techniques to study cell adhesion and migration. Nat. Cell Biol. 4, E91-E96.   DOI
58 Uroz, M., Wistorf, S., Serra-Picamal, X., Conte, V., Sales-Pardo, M., Roca-Cusachs, P., Guimera, R., and Trepat, X. (2018). Regulation of cell cycle progression by cell-cell and cell-matrix forces. Nat. Cell Biol. 20, 646-654.   DOI