• Title/Summary/Keyword: polymer magnet

Search Result 16, Processing Time 0.029 seconds

Heat Resistant Electromagnetic Noise Absorber Films Using Poly(amide imide)/Soft Magnet Composite (내열성 전자기 노이즈 흡수 폴리(아미드-이미드)/연자성체 복합체 필름)

  • Han, Ji-Eun;Jeon, Byung-Kuk;Goo, Bon-Jae;Cho, Seung-Hyun;Kim, Sung-Hoon;Lee, Kyung-Sub;Park, Yun-Heum;Lee, Jun-Young
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2009
  • We fabricated the electromagnetic (EM) noise absorber films for high temperature use by blending a soft magnetic powder with poly(amide imide) (PAI). The EM noise absorber films of PAI/soft magnet composite were prepared by casting the solution of poly(amide amic acid)/soft magnet powder into glass substrate with casting applicator device and then thermal imidization. The obtained films were fully characterized and their physical properties including thermal behavior, thermal stability and mechanical properties were studied. The EM noise absorption ability was also investigated using micro-strip line method. At 1 GHz, the power loss of composite film with 150 ${\mu}m$ thickness was about 25%.

Study on Organic Binder for Anisotropic Rare-Earth Bonded Magnets (이방성 희토류 본드자석용 유기 바인더에 관한 연구)

  • Heo, Jeong-Sub;Cho, Yeon-Hwa;Nam, Sung-Cheol;Kim, Ji-Kyeong;Lee, Jung-Goo;Yu, Ji-Hoon
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.86-89
    • /
    • 2014
  • Anisotropic bonded magnet is composed of magnetic powder and organic binder. organic binder in bonded magnet, serves to orientation of the powder. organic binder is composed of polymer resin, lubricant, hardener and coupling agent, etc.in this study, selection of the various components to producing an organic binder and by adjusting the composition ratio and concentrate, apply to bonded magnet for producing an organic binder that suitable for magnetic powder. so evaluation of magnetic properties and mechanical properties, the organic binder ratio and component was confirmed to suitable for bonded magnet.

OPP Polymer의 Plasma 표면 처리에 따른 Al 접착력의 향상

  • 한세진;김용한;이택동
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.212-212
    • /
    • 1999
  • Ar-O2 분위기의 Plasma 표면 처리된 OPP 의 polymer 위에 약 400$\AA$ 정도로 sputter 코팅된 Al의 부착력에 관하여 연구를 하였다. 금속과 polymer와 같이 성질이 서로 다른 물질이 서로 결합할 때 접착력은 제품의 성능과 신뢰도를 결정하는데 매우 중요한 인자이다. 최근 고분자재료의 표면을 플라즈마 처리 (plasma surface treatment)에 의해 고분자와 금속도포(coating) 층간의 접착력향상에 따라, 증착필름 및 인쇄용 필름 등의 기능도 향상시킬 수 있다. 저온 plasma를 이용한 표면처리는 plastic 재료가 가지고 있는 기본적인 특성을 저해하지 않고, 그 표면 층만을 개량하는 plasma 또는 sputter etching 갚은 electrical discharge 방법은 진공 증착 방식에서 많이 사용되고 있다. 7$\mu\textrm{m}$의 두께 OPP polymer를 10m/min의 속도로 OPP의 표면을 연속 plasma pretreatment를 하였다. 5$\times$10-2torr에서, PEM(Plasma Emission Monitor)를 이용하여 plasma intensity에 따른 Ar/O2비를 변화시키면서 test를 하였다. AFM과 XPS를 이용하여 OPP의 표면분석을 하였다. 이 plasma처리는 기존의 D.C plasma 처리 방식과는 달리 Midium frequency AC voltage hollow cathod 방식으로 plasma를 발생된 high energy plasma 분위기를 만들 수 있다. 이러한 방식은 -cycle일 때 plasma로부터 발생된 전자가 polymer 표면을 bombard 하게 되고, +cycle 일 때 polymer 표면이 cathod 가 되어 active ion에 의해 sputtering 이 된다. 이때 plasma 처리기의 polymer 기판 후면에 magnet를 설치하여 높은 ionization을 발생시켜 처리 효과를 한층 높여 주었다. 이 plasma 처리는 표면 청정화, 표면 etching 이 동시에 행하는 것과 함께 장시간 처리에 의해 표면에서는 미세한 과, C=C기, -C-O-의 극성기의 도입에 의한 표면 개량이 된다는 것을 관찰할 수 있다. OPP polymer 표면을 Ar 100%로 plasma 처리한 경우 C-O, C=O 등의 carbonyl가 발생됨을 알 수 있었다. C-O, C=O 등의 carbynyl polor group이 도입됨에 따라 sputter된 Al의 접착력이 향상됨을 알 수 있으며, TEM 관찰 결과 grain size도 상당히 작아짐을 알 수 있었다.

  • PDF

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.

Current Status of the Synchrotron Small-Angle X-ray Scattering Station BL4C1 at the Pohang Accelerator Laboratory

  • Jorg Bolze;Kim, Jehan;Huang, Jung-Yun;Seungyu Rah;Youn, Hwa-Shik;Lee, Byeongdu;Shin, Tae-Joo;Moonhor Ree
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.2-12
    • /
    • 2002
  • The small-angle X-ray scattering (SAXS) beamline BL4C1 at the 2.5 GeV storage ring of the Pohang Accelerator Laboratory (PAL) has been in its first you of operation since August 2000. During this first stage it could meet the basic requirements of the rapidly growing domestic SAXS user community, which has been carrying out measurements mainly on various polymer systems. The X-ray source is a bending magnet which produces white radiation with a critical energy of 5.5 keV. A synthetic double multilayer monochromator selects quasi-monochromatic radiation with a bandwidth of ca. 1.5%. This relatively low degree of monochromatization is sufficient for most SAXS measurements and allows a considerably higher flux at the sample as compared to monochromators using single crystals. Higher harmonics from the monochromator are rejected by reflection from a flat mirror, and a slit system is installed for collimation. A charge-coupled device (CCD) system, two one-dimensional photodiode arrays (PDA) and imaging plates (IP) are available its detectors. The overall performance of the beamline optics and of the detector systems has been checked using various standard samples. While the CCD and PDA detectors are well-suited for diffraction measurements, they give unsatisfactory data from weakly scattering samples, due to their high intrinsic noise. By using the IP system smooth scattering curves could be obtained in a wide dynamic range. In the second stage, stating from August 2001, the beamline will be upgraded with additional slits, focusing optics and gas-filled proportional detectors.

The Effect of Orientation of Magneto-responsible Particles on the Transmissibility of Magneto-rheological Elastomer (자기장 응답 입자의 배향이 자기유변 탄성체의 전달성에 미치는 영향)

  • Lee, Joo-Hwan;Chung, Kyung-Ho;Yoon, Ji-Hyun;Oh, Jae-Eung;Kim, Min-Soo;Yang, Kyung-Mo;Lee, Seong-Hoon
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • The neodymium magnet inserted mold was proposed to orient magneto-responsible particles efficiently. The anisotropic magneto-rheological elastomer(MRE) was prepared using the new mold and the optimum amounts of the particles was 30 vol.%. As the orientation of particles was increased, the tensile strength of MRE was decreased, while the hardness of MRE was increased. It was found that the MRE containing 30 vol.% of magneto-responsible particles showed the maximum magneto-rheological effect. The ratio of shear modulus shift was 59% at the input current of 3 A. The transmissibility of MRE was decreased with increasing the input current and loading amounts of magneto-responsible particles. Therefore, the damping property of MRE could be improved by preparing the anisotropic MRE.

A Study on the Isotropic Nd$_2$Fe$_{14}$B/Epoxy Bonded Magnets with High Characteristics (고특성 등방성 Nd$_2$Fe$_{14}$B/에폭시 본드자석의 연구)

  • 조태식;정원용
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.98-104
    • /
    • 2002
  • This study was investigated to fabricate the isotropic $Nd_2Fe_{14}B$/epoxy bonded magnets with high characteristics paroduced by compression molding. The magnetic characteristics of the bonded magnets were directly proportional to the density of the magnets and were enhanced by using raw $Nd_2Fe_{14}B$ magnetic powders, having the mean particle size of $200{\mu} m$.without additional milling process. The high characteristics of the bonded magnets were achieved at the following conditions: epoxy resin of 2.0 wt%, silane coupling agent of 0.8 wt%, curing agent of 0.7 wt% on the base of magnetic powders, and curing condition of $150^{\circ}C$/3 hrs. The bonded magnets at the optimum conditions indicated the high characteristics such as the density of 6.1 g/㎤, the remanent flux density of 7.1 kG, the maximum energy product of 9.7 MGOe, and the compressive strength of 17 kg/$mm^2$.

Magnetite Nanoparticles Containing Nanoporous Carbon for the Adsorption of Ibuprofen (마그네타이트 나노입자를 포함한 탄소나노세공체 합성과 아이부프로펜 흡착거동)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Preliminary studies on the synthesis of magnetic nanoparticles including nanoporous carbon materials have been done via a direct carbonization process from resol, ferric nitrate and triblock copolymer F127. The results show that the nanoporous magnetite/carbon ($Fe_3O_4$/carbon) with a low $Fe_3O_4$ content (1 wt%) possesses an ordered 2-D hexagonal (p6mm) structure, uniform nanopores (3.6 nm), high surface areas (up to 635 $m^2/g$) and pore volumes (up to 0.48 $cm^3/g$). Magnetite nanoparticles with a small particle size (10.2 nm) were confined in the matrix of amorphous carbon frameworks with superparamagnetic property (7.7 emu/g). The nanoporous magnetite/carbon showed maximum adsorption amount (995 mg/g) of ibuprofen after 24 h at room temperature. The nanoporous magnetite/carbon was separated from solution easily by using a magnet. The nanoporous magnetite/carbon material is a good adsorbent for hydrophobic organic drug molecules, i.e. ibuprofen.

Bioconjugation of Poly(poly(ethylene glycol) methacrylate)-Coated Iron Oxide Magnetic Nanoparticles for Magnetic Capture of Target Proteins

  • Kang, Sung-Min;Choi, In-Sung S.;Lee, Kyung-Bok;Kim, Yong-Seong
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.259-264
    • /
    • 2009
  • Chemical modification of magnetic nanoparticles(MNPs) with functional polymers has recently gained a great deal of attention because of the potential application of MNPs to in vivo and in vitro biotechnology. The potential use of MNPs as capturing agents and sensitive biosensors has been intensively investigated because MNPs exhibit good separation-capability and binding-specificity for biomolecules after suitable surface functionalization processes. In this work, we demonstrate an efficient method for the surface modification of MNPs, by combining surface-initiated polymerization and the subsequent conjugation of the biologically active molecules. The polymeric shells of non-biofouling poly(poly(ethylene glycol) methacrylate)(pPEGMA) were introduced onto the surface of MNPs by surface-initiated, atom transfer radical polymerization(SI-ATRP). With biotin as a model of biologically active compounds, the polymeric shells underwent successful post-functionalization via activation of the polymeric shells and bioconjugation of biotin. The resulting MNP hybrids showed a biospecific binding property for streptavidin and could be separated by magnet capture.