• Title/Summary/Keyword: polymer dispersion

Search Result 617, Processing Time 0.023 seconds

EVA/Clay Nanocomposite by Solution Blending: Effect of Aluminosilicate Layers on Mechanical and Thermal Properties

  • Pramanik, M.;Srivastava, S.K.;Samantaray, B.K.;Bhowmick, A.K.
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.260-266
    • /
    • 2003
  • Ethylene vinyl acetate (EVA)/clay nanocomposites were synthesized by blending a solution of ethylene vinyl acetate copolymer containing 12% vinyl acetate abbreviated as EVA-12 in toluene and dispersion of dodecyl ammonium ion intercalated montmorillonite (l2Me-MMT) in N,N-dimethyl acetamide (DMAc). X-ray patterns of sodium montmorillonite ($Na^+$-MMT) and 12Me-MMT exhibited $d_{001}$ peak at $2{\theta}=7.4^{\circ}$ and $2{\theta}=5.6^{\circ}$ respectively; that is, the interlayer spacing of MMT increased by about 0.39 nm due to intercalation of dodecyl ammonium ions. The XRD trace of EVA showed no peak in the angular range of $3-10^{\circ}(2{\theta})$. In the XRD patterns of EVA/clay hybrids with clay content up to 6 wt% the basal reflection peak of 12Me-MMT was absent. leading to the formation of delaminated configuration of the composites. When the 12Me-MMT content was 8 wt% in the EVA-12 matrix, the hybrid revealed a peak at about $2{\theta}=5.6^{\circ}$, owing to the aggregation of aluminosilicate layers. Transmission electron microscopic photograph exhibited that an average size of 12-15 nm clay layers were randomly and homogeneously dispersed in the polymer matrix, which led to the formation of nanocomposite with delaminated configuration. The formation of delaminated nanocomposites was manifested through the enhancement of mechanical properties and thermal stability, e.g. tensile strength of an hybrid containing only 2 wt% 12Me-MMT was enhanced by about 36% as compared with neat EVA-12.

Electrospun Antimicrobial Polyurethane Nanofibers Containing Silver Nanoparticles for Biotechnological Applications

  • Sheikh, Faheem A.;Barakat, Nasser A.M.;Kanjwal, Muzafar A.;Chaudhari, Atul A.;Jung, In-Hee;Lee, John-Hwa;Kim, Hak-Yong
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.688-696
    • /
    • 2009
  • In this study, a new class of polyurethane (PU) nanofibers containing silver (Ag) nanoparticles (NPs) was synthesized by electrospinning. A simple method that did not depending on additional foreign chemicals was used to self synthesize the silver NPs in/on PU nanofibers. The synthesis of silver NPs was carried out by exploiting the reduction ability of N,N-dimethylformamide (DMF), which is used mainly to decompose silver nitrate to silver NPs. Typically, a sol-gel consisting of $AgNO_3$/PU was electrospun and aged for one week. Silver NPs were created in/on PU nanofibers. SEM confirmed the well oriented nanofibers and good dispersion of pure silver NPs. TEM indicated that the Ag NPs were 5 to 20 nm in diameter. XRD demonstrated the good crystalline features of silver metal. The mechanical properties of the nanofiber mats showed improvement with increasing silver NPs content. The fixedness of the silver NPs obtained on PU nanofibers was examined by harsh successive washing of the as-prepared mats using a large amount of water. The results confirmed the good stability of the synthesized nanofiber mats. Two model organisms, E. coli and S. typhimurium, were used to check the antimicrobial influence of these nanofiber mats. Subsequently, antimicrobial tests indicated that the prepared nanofibers have a high bactericidal effect. Accordingly, these results highlight the potential use of these nanofiber mats as antimicrobial agents.

Functionalized Emulsion Styrene-Butadiene Rubber Containing Diethylaminoethyl Methacrylate for Silica Filled Compounds

  • Park, Jinwoo;Kim, Kihyun;Lim, Seok-Hwan;Hong, Youngkun;Paik, Hyun-jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, diethylaminoethyl methacrylate-styrene-butadiene terpolymer (DEAEMA-SBR), in which diethylaminoethyl methacrylate (DEAEMA) was introduced to the SBR molecule as a third monomer, was synthesized by cold emulsion polymerization. It is expected that amine group introduced to a rubber molecule would improve dispersion of silica by the formation of hydrogen bond (or ionic coupling) between the amine group and silanol groups of silica surface. The chemical structure of DEAEMA-SBR was analyzed using proton nuclear magnetic resonance spectroscopy (H-NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Then, various properties of DEAEMA-SBR/silica composite such as crosslink density, bound rubber content, abrasion resistance, and mechanical properties were evaluated. As a result, bound rubber content and crosslink density of DEAEMA-SBR/silica compound were higher than those of the SBR 1721 composite. Abrasion resistance and moduli at 300% elongation of the DEAEMA-SBR/silica composite were better than those of SBR 1721 composite due to the high bound rubber content and crosslink density. These results are attributed to high affinity between DEAEMA-SBR and silica. The proposed study suggests that DEAEMA-SBR can help to improve mechanical properties and abrasion resistance of the tire tread part.

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

Preparation and Characterizations of Sulfonated Graphene Oxide (sGO)/Nafion Composite Membranes for Polymer Electrolyte Fuel Cells (고분자 전해질막 연료전지(PEMFCs)용 Sulfonated Graphene Oxide (sGO)/Nafion 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Kang, Moon-Sung;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • In this study, the composite membranes prepared by sulfonated graphene oxide (sGO) and Nafion were developed as proton exchange membranes (PEMs) for polymer electrolyte membrane fuel cells (PEMFCs). The sGO/Nafion composite membranes were prepared by mixing Nafion solution with the sGO dispersed in a binary solvent system to improve dispersity of sGO. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and SEM, etc. As a result, the binary solvent system, i.e., ortho-dichlorobenzene (ODB) and N,N-dimethylacetamide (DMAc), were used to obtain high dispersion of sGO particles in Nafion solution, and the ionic conductivity of the sGO/Nafion composite membrane showed $0.06Scm^{-1}$ similar to other research results at lower water uptake, 11 wt%.

Thermal and Electrical Properties of Polyacrylate/Carbon Nanotube Composite Sheet (폴리아크릴레이트/카본나노튜브 복합체 시트의 열적.전기적 성질)

  • Choi, A.Y.;Yoon, K.H.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.231-236
    • /
    • 2011
  • The polyacrylate/multi-walled carbon nanotube (MWNT) composites were prepared and investigated for the application as a counter electrode in solar cell. The electrical conductivity of the composites was increased with increasing MWNT content and with the thickness of the sheet. The surface resistivity value of the composite at 50 wt% loading of MWNT was 0.36 ${\Omega}$/sq. The thermal decomposition temperature of the composites was also increased with the MWNT contents, and the increase of $15^{\circ}C$ was observed at the composite of polyacrylate/MWNT (50/50, w/w). The increase of storage modulus of the composites was observed, especially at the higher temperature compared to polyacrylate. The dimensional change of polyacrylate decreased over $20^{\circ}C$, but that of the composite increased linearly with the temperature. The morphology of the composites stands for the good dispersion of MWNT into the polyacrylate matrix.

Physical Properties of Functionalized Graphene Sheet/Poly(ethylene-co-vinyl acetate) Composites (관능화 그래핀 쉬트/에틸렌-비닐아세테이트 공중합체 복합재료의 물성)

  • Lee, Ki Suk;Kim, Jeong Ho;Jeong, Han Mo
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • The physical properties of functionalized graphene sheet (FGS)/poly(ethylene-co-vinyl acetate) (EVA) was examined with various kinds of EVA, having vinyl acetate (VA) contents in the range of 0 to 40 wt%. The compatibility between FGS and EVA was enhanced as the polar VA content of EVA increased. Thus, the dispersion of FGS in EVA became finer, and the decrease of surface resistivity and the increase of tensile modulus by the added FGS became more effective when the VA content of EVA was high. When the VA content was low, the elongation at break was reduced drastically by added FGS due to the poor adhesion of FGS/EVA interface. The crystallization of EVA was generally retarded by the interaction with dispersed FGS. However, when both the VA content of EVA and the added amount of FGS were low, the crystallization of EVA was enhanced, probably due to the predominant nucleating effect by FGS.

Thermal Property, Morphology, Optical Transparency, and Gas Permeability of PVA/SPT Nanocomposite Films and Equi-biaxial Stretching Films (폴리(비닐 알코올)/사포나이트 나노 복합체 필름 및 연신된 필름의 열적 성질, 모폴로지, 광학 투명성, 및 기체 투과성)

  • Ham, Miran;Kim, Jeong-Cheol;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.579-586
    • /
    • 2013
  • Poly(vinyl alcohol)(PVA) nanocomposite films containing various saponite (SPT) clay contents were synthesized using a solution intercalation method. The thermal property, morphology, optical transparency, and gas permeability of the PVA nanocomposite films with various SPT contents in the range of 0 to 10 wt% were examined. PVA nanocomposite film containing 5 wt% SPT showed excellent thermal and gas barrier property. The hybrid films containing 5 wt% SPT were equibiaxially stretched with stretching ratios ranging from 150 to 250%. The clay dispersion, optical transparency, and gas permeability were also examined as a function of equibiaxial stretching ratio. The PVA nanocomposite films with various equibiaxial stretching ratios showed excellent optical transparency and barrier to oxygen permeability.

Computer Simulation of the Effects of Content and Dispersion of Impact Modifier on the Impact Strength of Nylon 6 Composites (충격보강제의 함유량과 분산이 나일론 6 복합체의 충격강도에 미치는 영향의 컴퓨터 해석)

  • Woo, Jeong Woo;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.284-292
    • /
    • 2014
  • Polymer has low mechanical strength than metal. In particular, the impact strength is very weak. Impact modifier reinforced polymers are frequently used. Impact strength of reinforced polymer is changed according to content and distribution of impact modifier. In this study, izod impact test has been simulated to analyze the mechanism of impact modifier reinforced Nylon 6. Computational results were compared for numbers and distributions of impact modifier. As the total volume of rubber particles decreased, the stress at the notch increased for the simulation model that the volume decreases as particle number increases. As the surface area of particle sphere increased, the stress and difference of principle stress increased for the simulation model that the total surface increases as particle number increases.

Preparation of Graphene/Waterborne Polyurethane Nanocomposite through in-situ Polymerization (In-situ 중합을 통한 그래핀/수분산 폴리우레탄 나노 복합체 제조)

  • Cha, Ji-Jung;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.507-512
    • /
    • 2013
  • A graphene/waterborne polyurethane (WPU) nano composite was prepared by in-situ polymerization of PU and graphene having isocyanate (iGO) group in order to improve physicochemical/electrical characteristics. The properties of the graphene/WPU nanocomposite can effectively be enhanced as compared pristine WPU; up to 57% of tensile strength and $10^2$ fold of electrical conductivity with introduction of 2 wt% graphene. In addition, mechanical/electrical properties of the graphene/WPU nanocompsite were higher than those of graphene/WPU composite prepared by a simple physical blend method. It might attribute to homogeneous dispersion of iGO in the WPU matrix via covalent bonds and hydrogen bonds between WPU and iGO from the results of morphological analysis by scanning electron microscopy (SEM).