Browse > Article
http://dx.doi.org/10.7473/EC.2014.49.4.284

Computer Simulation of the Effects of Content and Dispersion of Impact Modifier on the Impact Strength of Nylon 6 Composites  

Woo, Jeong Woo (Graduate School, Seoul National University of Science and Technology)
Lyu, Min-Young (Department of Machanical System Design Engineering, Seoul National University of Science and Technology)
Publication Information
Elastomers and Composites / v.49, no.4, 2014 , pp. 284-292 More about this Journal
Abstract
Polymer has low mechanical strength than metal. In particular, the impact strength is very weak. Impact modifier reinforced polymers are frequently used. Impact strength of reinforced polymer is changed according to content and distribution of impact modifier. In this study, izod impact test has been simulated to analyze the mechanism of impact modifier reinforced Nylon 6. Computational results were compared for numbers and distributions of impact modifier. As the total volume of rubber particles decreased, the stress at the notch increased for the simulation model that the volume decreases as particle number increases. As the surface area of particle sphere increased, the stress and difference of principle stress increased for the simulation model that the total surface increases as particle number increases.
Keywords
izod impact test; rubber particle; Nylon 6; impact modifier; principal stress; computer simulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. J. M. Borggreve, R. J. Gaymans, and H. M. Eichenwald, "Impact behaviour of nylon-rubber blends: 6. Influence of structure on voiding processes; toughening mechanism", Polymer, 30, 78 (1989).   DOI
2 J.J. Huang, H. Keskkula, and D.R. Paul, "Comparison of the toughening behavior of nylon 6 versus an amorphous polyamide using various maleated elastomers", Polymer, 47, 639 (2006).   DOI
3 R. A. Kudva, H. Keskkula and D. R. Paul, "Fracture behavior of nylon 6/ABS blends compatibilized with an imidized acrylic polymer", Polymer, 41, 335 (2000).   DOI
4 Meredith N. Silberstein, "Mechanics of Notched Izod Impact Testing of Polycarbonate", Massachusetts Institute of Technology (2005).
5 Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, "Mechanical properties of nylon 6-clay hybrid", J. Mater. Res., 8, 1185 (1993).   DOI   ScienceOn
6 D. R. Holmes, C. W. Bunn, and D. J. Smith, "The crystal structure of polycaproamide: Nylon 6", J. Polym. Sci., 17, 159 (1955).   DOI
7 G. X. Chen, H. S. Kim, B. H. Park, and J. S. Yoon, "Multiwalled carbon nanotubes reinforced nylon 6 composites" Polymer, 47, 4760 (2006).   DOI   ScienceOn
8 K. Dijkstra, J. Ter Laak, and R. J. Gaymans,"Nylon-6/rubber blends: 6. Notched tensile impact testing of nylon-6/(ethylene-propylene rubber)blends", Polymer, 35, 315 (1994).   DOI
9 A. Gonzalez-Montiel, H. Keskkula, and D. R. Paul, "Impactmodified nylon 6/polypropylene blends: 2. Effect of reactive functionality on morphology and mechanical properties", Polymer, 36, 4605 (1995).   DOI   ScienceOn
10 Y. H. Park, M. Y. Lyu, D. R. Paul, "Computer simulation of Izod Impact test for impact modifier reinforced Nylon 6", Elast. Compos., 48, 172 (2013).   DOI
11 "Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics". ASTM International
12 A. J. Oshinski, H. Keskkula and D. R. Paul, "The role of matrix molecular weight in rubber toughened nylon 6 blends:2. Room temperature Izod impact toughness", Polymer, 37, 4909 (1996).   DOI
13 C. B. Bucknall, D. R. Paul, "Notched impact behavior of polymer blends: Part 1: New model for particle size dependence", Polymer, 50, 5539 (2009).   DOI   ScienceOn
14 R. J. M. Borggreve, R. J. Gaymans, J. Schuijer and J. F. Housz, "Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size", Polymer, 28, 1489 (1987).   DOI   ScienceOn
15 Y. Kayano, H. Keskkula, and D. R. Paul, "Fracture behaviour of some rubber-toughened nylon 6 blends", Polymer, 39, 2835 (1998).   DOI
16 R. A. Pearson, A. F. Yee, "Influence of particle size and particle size distribution on toughening mechanisms in rubbermodified epoxies" J. Mat. Sci., 26, 3828 (1991).   DOI
17 N. J. Mills, "The mechanism of brittle fracture in notched impact tests on polycarbonate", J. Mater. Sci., 11, 363 (1976).   DOI   ScienceOn
18 R. A. Deblieck, D. J. M. Van Beek, K. Remerie, and I. M. Ward, "Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network", Polymer, 52, 2979 (2011).   DOI
19 A. J. Oshinski, H. Keskkula, and D. R. Paul. "The role of matrix molecular weight in rubber toughened nylon 6 blends:1. Morphology", Polymer, 37, 4891 (1996).   DOI
20 T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, "Nylon 6 nanocomposites: the effect of matrix molecular weight", Polymer, 42, 9929 (2001).   DOI   ScienceOn