Electrospun Antimicrobial Polyurethane Nanofibers Containing Silver Nanoparticles for Biotechnological Applications

  • Sheikh, Faheem A. (Department of Bionano System Engineering, Chonbuk National University) ;
  • Barakat, Nasser A.M. (Chemical Engineering Department, Faculty of Engineering, El-Minia University, El-Minia, Egypt Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kanjwal, Muzafar A. (Department of Polymer Nano Science and Technology, Chonbuk National University) ;
  • Chaudhari, Atul A. (College of Veterinary Medicine, Chonbuk National University) ;
  • Jung, In-Hee (College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, John-Hwa (College of Veterinary Medicine, Chonbuk National University) ;
  • Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University)
  • Published : 2009.09.25

Abstract

In this study, a new class of polyurethane (PU) nanofibers containing silver (Ag) nanoparticles (NPs) was synthesized by electrospinning. A simple method that did not depending on additional foreign chemicals was used to self synthesize the silver NPs in/on PU nanofibers. The synthesis of silver NPs was carried out by exploiting the reduction ability of N,N-dimethylformamide (DMF), which is used mainly to decompose silver nitrate to silver NPs. Typically, a sol-gel consisting of $AgNO_3$/PU was electrospun and aged for one week. Silver NPs were created in/on PU nanofibers. SEM confirmed the well oriented nanofibers and good dispersion of pure silver NPs. TEM indicated that the Ag NPs were 5 to 20 nm in diameter. XRD demonstrated the good crystalline features of silver metal. The mechanical properties of the nanofiber mats showed improvement with increasing silver NPs content. The fixedness of the silver NPs obtained on PU nanofibers was examined by harsh successive washing of the as-prepared mats using a large amount of water. The results confirmed the good stability of the synthesized nanofiber mats. Two model organisms, E. coli and S. typhimurium, were used to check the antimicrobial influence of these nanofiber mats. Subsequently, antimicrobial tests indicated that the prepared nanofibers have a high bactericidal effect. Accordingly, these results highlight the potential use of these nanofiber mats as antimicrobial agents.

Keywords

References

  1. A. L. Peter, Adv. Drug Deliver. Rev., 57, 1471 (2005) https://doi.org/10.1016/j.addr.2005.04.003
  2. T. J. Berger, J. A. Spadaro, S. E. Chapin, and R. O. Becker, Antimicrob. Agents Chemother., 9, 357 (1976) https://doi.org/10.1128/AAC.9.2.357
  3. S. Silver, FEMS Microbiol. Rev., 27, 341 (2003) https://doi.org/10.1016/S0168-6445(03)00047-0
  4. L. S. Nair and C. T. Laurencin, J. Biomed. Nanotech., 3, 16 (2007)
  5. J. Tian, K. K. Wong, C. M. Ho, C. N. Lok, W. Y. Yu, C. M. Che, J. F. Chiu, and P. K. Tam, Chem. Med. Chem., 2, 129 (2007) https://doi.org/10.1002/cmdc.200600171
  6. J. Trogolo, Filtr. Sep., 43, 28 (2006)
  7. M. E. Innes, N. Umraw, J. S. Fish, M. Gomez, and R. C. Cartotto, Burns, 27, 621 (2001) https://doi.org/10.1016/S0305-4179(01)00015-8
  8. M. A. Butkus, M. Talbot, and M. P. Labare, Water Res., 39, 4925 (2005) https://doi.org/10.1016/j.watres.2005.09.037
  9. R. F. DeBono, A. Helluy, M. Heimlich, and U. J. Krull, Sens. Actuators, B, 11, 487 (1993) https://doi.org/10.1016/0925-4005(93)85292-I
  10. P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, AlChE J., 45, 190 (1999) https://doi.org/10.1002/aic.690450116
  11. P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, Colloid Surf. A, 187/188, 469 (2001)
  12. W. K. Son, J. H. Youk, and W. H. Park, Carbohydr. Polym., 65, 430 (2006) https://doi.org/10.1016/j.carbpol.2006.01.037
  13. H. K. Lee, E. H. Jeong, C. K. Chi Baek, and J. H. Youk, Mater. Lett., 59, 2977 (2005) https://doi.org/10.1016/j.matlet.2005.05.005
  14. Y. Y. Duan, J. Jia, S.-H Wang, Sh. W. Yan, L. Jin, and Z. Y. Wang, J. Appl. Polym. Sci., 106, 1208 (2007) https://doi.org/10.1002/app.26786
  15. H. Kong and J. Jang, Langmuir, 24, 2051 (2008) https://doi.org/10.1021/la703085e
  16. K. H. Hong, J. L. Park, I. H. Sul, J. H. Youk, and T. J. Kang, J. Polym. Sci. Part B: Polym. Phys., 44, 2468 (2006) https://doi.org/10.1002/polb.20913
  17. Q. Zhang, D. Wu, S. Qi, Z. Wu, X. Yang, and R. Jin, Mater. Lett., 61, 4027 (2007) https://doi.org/10.1016/j.matlet.2007.01.011
  18. Y. H. Jung, H. Y. Kim, D. R. Lee, S. Y. Park, and M. S. Khil, Macromol. Res., 13, 385 (2005) https://doi.org/10.1007/BF03218470
  19. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995) https://doi.org/10.1016/0304-3886(95)00041-8
  20. H.-J. Jin, M.-O. Hwang, J. S. Yoon, K. H. Lee, I.-J. Chin, and M.-N. Kim, Macromol. Res., 13, 73 (2005) https://doi.org/10.1007/BF03219018
  21. C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin, Adv. Drug Deliver. Rev., 59, 1413 (2007) https://doi.org/10.1016/j.addr.2007.04.022
  22. D. Aussawasathien, C. Teerawattananon, and A. Vongachariy, J. Membr. Sci., 315, 11 (2008) https://doi.org/10.1016/j.memsci.2008.01.049
  23. S. Kidoaki, I. K. Kwon, and T. Matsuda, J. Biomed. Mater. Res. Part B: Appl. Biomater., 786, 219 (2006)
  24. T. K. Khlystalova, M. N. Kurganova, A. I. Demina, M. B. Petova, and O. G. Tarakanov, Mech. Compos. Mater., 21, 763 (1986) https://doi.org/10.1007/BF00605943
  25. J. H. Han, J. D. Taylor, D. S. Kim, Y. S. Kim, Y. T. Kim, G. S. Cha, and H. Nam, Sens. Actuators B, 123, 384 (2007) https://doi.org/10.1016/j.snb.2006.08.042
  26. N. Hains, V. Friscic, and D. Gordos, Int. J. Cloth. Sci. Technol., 15, 250 (2003) https://doi.org/10.1108/09556220310478350
  27. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res. B: Appl. Biomater., 67, 657 (2003)
  28. C. Yao, X. Li, K. G. Neoh, Z. Shi, and E. T. Kang, J. Membr. Sci., 320, 295 (2008)
  29. E. H. Jeong, J. Yang, and J. H. Youk, Mater. Lett., 61, 3991 (2007) https://doi.org/10.1016/j.matlet.2007.01.003
  30. I. Pastoriza-Santos and L. M. Liz-Marzan, Pure Appl. Chem., 72, 83 (2000) https://doi.org/10.1351/pac200072010083
  31. I. Pastoriza-Santos and L. M. Liz-Marzan, Langmuir, 15, 849 (1999)
  32. N. L. Lala, R. Ramaseshan, L. Bojun, S. Sundarrajan, R. S. Barhate, L. Ying-Jun, and S. Ramakrishna, Biotechnol. Bioeng., 97, 1357 (2007) https://doi.org/10.1002/bit.21351
  33. H. Zhuo, J. Hu, S. Chen, and L. Yeung, J. Appl. Polym. Sci., 109, 406 (2008) https://doi.org/10.1002/app.28067
  34. S. A. Guelcher, Tissue Eng. Part B, 14, 3 (2008)
  35. J. H. Park, B. S. Kim, Y. C. Yoo, M. S. Khil, and H. Y. Kim, J. Appl. Polym. Sci., 107, 2211 (2008) https://doi.org/10.1002/app.27322
  36. K. W. Kim, Effects of Electrospinning Parameters on the Fiber Formation, PhD theses, Chonbuk Nat. Univ. (2007), and reference therein
  37. C. F. Bohrem and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 1983
  38. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, Appl. Phys. Lett., 85, 5833 (2004) https://doi.org/10.1063/1.1835997
  39. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 107, 7426 (2003) https://doi.org/10.1021/jp027749b
  40. H. H. Jose, I. Martini, and V. H. Gregory, J. Phys. Chem. B, 102, 6958 (1998) https://doi.org/10.1021/jp9809787
  41. K. Patel, S. Kapoor, D. P. Dave, and T. Mukerjee, J. Chem. Sci., 117, 53 (2005) https://doi.org/10.1007/BF02704361
  42. B. S. Atiyeh, M. Costagliola, S. N. Hayek, and S. A. Dibo, Burns, 33, 139 (2007) https://doi.org/10.1016/j.burns.2006.06.010
  43. C. L. Gallant-Behm, H. Q. Yin, S. Liu, J. P. Heggers, R. E. Langford, M. E. Olson, D. A. Hart, and R. E. Burrell, Wound Repair Regen., 13, 412 (2005) https://doi.org/10.1111/j.1067-1927.2005.130409.x
  44. K. H. Choa, J. E. Park, T. Osaka, and S. G. Park, Electrochim. Acta, 51, 956 (2005) https://doi.org/10.1016/j.electacta.2005.04.071