Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.53

Preparation and Characterizations of Sulfonated Graphene Oxide (sGO)/Nafion Composite Membranes for Polymer Electrolyte Fuel Cells  

Shin, Mun-Sik (Department of Environmental Engineering, College of Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Environmental Engineering, College of Engineering, Sangmyung University)
Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.27, no.1, 2017 , pp. 53-59 More about this Journal
Abstract
In this study, the composite membranes prepared by sulfonated graphene oxide (sGO) and Nafion were developed as proton exchange membranes (PEMs) for polymer electrolyte membrane fuel cells (PEMFCs). The sGO/Nafion composite membranes were prepared by mixing Nafion solution with the sGO dispersed in a binary solvent system to improve dispersity of sGO. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and SEM, etc. As a result, the binary solvent system, i.e., ortho-dichlorobenzene (ODB) and N,N-dimethylacetamide (DMAc), were used to obtain high dispersion of sGO particles in Nafion solution, and the ionic conductivity of the sGO/Nafion composite membrane showed $0.06Scm^{-1}$ similar to other research results at lower water uptake, 11 wt%.
Keywords
Fuel cell; proton exchange membrane; sGO/Nafion composite membrane; proton conductivity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 V. S. Bagotsky, "Proton-Exchange Membrane Fuel Cells,", pp. 41-69, John Wiley & Sons, New York, NY (2012).
2 H. J. Lee, Y.-W. Choi, T.-H. Yang, and B. C. Bae, "Hydrocarbon composite membranes with improved oxidative stability for PEMFC", J. Korean Electrochem. Soc., 17, 44 (2014).   DOI
3 J. O. Yuk, S. J. Lee, T.-H. Yang, and B. C. Bae, "Synthesis and characterization of multi-block sulfonated poly(arylene ether sulfone) polymer membrane with different hydrophilic moieties for PEMFC", J. Korean Electrochem. Soc., 18, 75 (2015).   DOI
4 S. Y. Lee, H. J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", J. Membr. Sci., 26, 1 (2016).   DOI
5 G. Nawn, G. Pace, S. Lavina, K. Vezzu, E. Negro, F. Bertasi, and V. Di Noto, "Nanocomposite membranes based on polybenzimidazole and $ZrO_2$ for high-temperature proton exchange membrane fuel cells.", Chemsuschem., 8, 1381 (2015).   DOI
6 C. Lee, S. M. Jo, J. Choi, K. Y. Baek, Y. B. Truong, I. L. Kyratzis, and Y. G. Shul, "$SiO_2$/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells." J. Membr. Sci., 10, 3665 (2013).
7 D. Cozzi, C. de Bonis, A. D'Epifanio, B. Mecheri, A. C. Tavares, and S. Licoccia, "Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications." J. Power. Sources., 248, 1127 (2014).   DOI
8 H. Guo and A. S. Barnard, "Proton transfer in the hydrogenbonded chains of lepidocrocite: a computational study", Phys. Chem. Chem. Phys., 13, 17864 (2011).   DOI
9 L. Zhang, S.-R. Chae, S. Lin, and M. R. Wiesner, "Proton-conducting composite membranes derived from ferroxane-polyvinyl alcohol complex", Environ. Eng. Sci., 29, 124 (2012).   DOI
10 M.-S. Shin, G.-H Oh, and J.-S. Park, "Preparation and characterizations of ferroxane-nafion composite membranes for PEMFC", Membr. J., 26, 135 (2016).   DOI
11 J. H. Jung, J. H. Jeon, V. Sridhar, and I. K. Oh, "Electro-active graphene-Nafion actuators.", Carbon., 4, 1279 (2011).
12 H. Ghassemi, T. Zawodzinski, D. Schiraldi, and S. Hamrock, "Cross-linked low EW PFSA for high temperature fuel cell," pp. 201-220, American Chemical Society, Washungton, DC (2012).
13 D. C. Lee, H. N. Yang, S. H. Park, and W. J. Kim, "Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell," J. Membr. Sci., 452, 20 (2014).   DOI
14 I. Nicotera, C. Simari, L. Coppola, P. Zygouri, D. Gournis, S. Brutti, and V. Baglio, "Sulfonated graphene oxide platelets in nafion nanocomposite membrane: advantages for application in direct methanol fuel cells.", J. Phys. Chem. C., 42, 24357 (2014).
15 H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-Y. Kang, J.-N. Lin, and F.-C. Chang, "Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells," Int. J. Hydrogen. Energ., 38, 13792 (2013).   DOI
16 Y. Sone, P. Ekdunge, and D. Simonsson, "Proton conductivity of nafion 117 as measured by a four-electrode AC impedance method", J. Electrochem. Soc., 143, 1254 (1996).   DOI
17 L. Zhang, S.-R. Chae, Z. Hendren, J.-S. Park, and M. R. Wiesner, "Recent advances in proton exchange membranes for fuel cell applications", Chem. Eng. J., 204, 87 (2012).
18 A. Kraytsberg and E. E. Yair, "Review of advanced materials for proton exchange membrane fuel cells", Energy. Fuel., 12, 7303 (2014).
19 E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives." Prog. Polym. Sci., 57, 103 (2016).   DOI
20 H. Zhang and P. K. Shen, "Recent development of polymer electrolyte membranes for fuel cells", Chem. Rev., 12, 2780 (2012).
21 K. Sopian and W. R. Wan Daud, "Challenges and future developments in proton exchange membrane fuel cells", Renew. Energ., 31, 719 (2006).   DOI