• Title/Summary/Keyword: polymer coating

Search Result 790, Processing Time 0.024 seconds

Development Trend of Nanofiber Filter (나노섬유 필터의 개발 동향)

  • Kang Inn-Kyu;Kim Young-Jin;Byun Hong-Sik
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Nanofiber is a broad phrase generally referring to a fiber with diameter less than 1 micron. Various polymers have been successfully electrospun into nanofibers in recent years. These nanofibers, due to their high surface area and porosity, have a great potential for use as filter medium, adsorption layers in protective clothing, etc. Nanofiber filters will enable new levels of filtration performance in the field of air filtration. In particular, nanofibers provide marked increases in filtration efficiency at relatively small pressure drop in permeability. Therefore, nanofiber filters could be substituted for conventional filter market due to the easy application of process and the possibility of coating to micron-sized non-woven sheets. This review is discussed on the trend of researche and development related to nanofiber filter including future marketability.

The Effect of Surface Protective Material on the Impact Resistance in Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 충격저항성에 미치는 표면 고무 보호재료의 영향)

  • Kang, Ki-Weon;Kim, Young-Soo;Lee, Mee-Hae;Choi, Rin
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.14-19
    • /
    • 2005
  • One area in which composites have been used rather extensively is for fabricating pressure vessel. These structures can be readily manufactured by filament winding, which is, as far as composite fabrication techniques are concerned, a relatively inexpensive method for producing composite structures. Unfortunately, the higher strength material and fabrication costs are not the only disadvantages of fiber-reinforced polymer composites when they are compared to metals. Additionally, these materials tend to exhibit brittle behavior. This is of particular concern when they are subjected to a low-velocity impact during routine handling a significant amount of structural damage can be introduced into the composites. The goals of this paper are to understand the impact damage behavior and identify the effect of surface coating materials on impact resistance in filament wound composite pressure vessels. For these, a series of low velocity impact tests was performed on specimens cutting from the full scale pressure vessel by the instrumented impact testing machine. The specimens are classified into two types with and without surface protective material. The visualization for impact damage is made by metallurgical microscope. Based on the impact force history and damage, the resistance parameters were employed and its validity in identifying the damage resistance of pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the protective material were evaluated quantitatively.

AE Application for Fracture Behavior of SiC Reinforced CFRP Composites (SiC 강화 CFRP 복합재의 파괴거동에 관한 음향방출 적용)

  • Ryu, Yeong Rok;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.16-21
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic(CFRP) composite with a higher specific strength and rigidity is more excellent than conventional metallic materials or other organic polymer of FRP. It has been widely used in vehicles, aerospaces and high technology industries which are associated with nuclear power fields. However, CFRP laminated composite has several disadvantages as like a delamination, matrix brittleness and anisotropic fibers that are the weak points of the crack initiation. In this present work, the reinforced silicon carbide(SiC) particles were added to the interlayer of CFRP laminates in order to mitigate the physical vulnerability affecting the cracking and breaking of the matrix in the CFRP laminated composite because of excellent specific strength and thermal shock resistance characteristics of SiC. The 1wt% of SiC particles were spread into the CFRP prepreg by using a spray coating method. After that, CFRP prepregs were laminated for the specimen. Also, the twill woven type CFRP prepreg was used because it has excellent workability. Thus the mechanical and fracture behaviors of the twill woven CFRP laminated composite reinforced with SiC particles were investigated with the acoustic emission(AE) method under a fracture test. The results show that the SiC particles enhance the mechanical and fracture characteristics of the twill CFRP laminate composite.

Investigation of Conductive Pattern Line for Direct Digital Printing (디지털 프린팅을 위한 전도성 배선에 관한 연구)

  • Kim, Yong-Sik;Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Tae-Hoon;Park, Jae-Chan;Kim, Tae-Gu;Jeong, Kyoung-Jin;Yun, Kwan-Soo;Park, Sung-Jun;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.502-502
    • /
    • 2007
  • Current thin film process using memory device fabrication process use expensive processes such as manufacturing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as PCB, FCPB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line for the electronic circuit board using metal ink contains Ag nano-particles. Metal lines are fabricated by two types of printing methods. One is a conventional printing method which is able to quick fabrication of fine pattern line, but has various difficulties about thick and high resolution DPI(Dot per Inch) pattern lines because of bulge and piling up phenomenon. Another(Second) methods is sequential printing method which has a various merits of fabrication for fine, thick and high resolution pattern lines without bulge. In this work, conductivities of metal pattern line are investigated with respect to printing methods and pattern thickness. As a result, conductivity of thick pattern is about several un.

  • PDF

A control dispersion of $TiO_2$ nano powder for electronic paper of electrophoresis (전기영동형 전자종이를 위한 $TiO_2$ 나노분말의 분산 제어)

  • Kim, Jung-Hee;Oh, Hyo-Jin;Lee, Nam-Hee;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • An electrophoretic display using $TiO_2$ particles is the most promising candidate because it offers various advantages such as ink-on-paper appearance, good contrast ratio, wide viewing angle, image stability in the off-state and extremely low power consumption. The core technology of electrophoretic display is the dispersion controlling of $TiO_2$ nano particles in nonaqueous solution. To prepare an ink for electronic paper using electrophoretic properties of $TiO_2$ nano particles, cyclohexane with low dielectric constant and transparency, polyethylene for producing polymer coating layer which reduces apparent gravity of $TiO_2$, and $TiO_2$ powders were mixed together by planetary-mill. The zeta-potential value of $TiO_2$ particles in cyclohexane was measured about -40mV, but was measured over -110mV by dispersant attached to polyethylene-coated $TiO_2$ surface. Prepared electronic ink was filled in cross patterned micro-wall with $200{\mu}m$ in width and $40{\mu}m$ in height on ITO glass designed by photolithography. The response time of electronic paper evaluated by mobility of $TiO_2$ particle between micro-walls was measured 0.067sec, but the drift velocity from reflectance wave form during reverse from of electronic ink was measured 0.07cm/sec.

  • PDF

The Study of Instrumental Analysis of Deposits on Paper Machine and Holes/spots in Paper (제지공정 침착이물질 및 종이내 불순물성분의 기기분석적 고찰)

  • 마금자;이복진
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.7-16
    • /
    • 1997
  • The constituents of deposits on paper machine and holes/spots in paper have been studied by consequently a combination of analytical techniques, such as FTIR, Py-GC-MS, and. EDS. FTIR spectroscopy was used prior to Py-GC-MS and EDS analysis, as preliminary analysis technique. The analysis of organic components were carried out with the use of a pyrolysis unit connected to a GC-MS, and inorganic components in ash were analysed by SEM equipped with an EDS analyzer after pyrolysis at 59$0^{\circ}C$. The deposits on the dryer section were complex pitch, which was the mixture of the organic contents of fatty acid ester and starch, and the inorganic contents of talc, clay, and calcium carbonate. The complex pitch was estimated to come from the coated broke. We knew the deposits on the metering rod of sym-sizer were associated with the interaction of unstable AKD and CaCO$_3$. The compositions of holes or spots varied considerably and were associated with chemical interaction within the system. The holes, spots, and blotches in the finished paper were PE and PP that were streamed out from pulp sources, complex pitch that were caused by the interaction of the different additives in the system, polymer such as flexible PVC that used for the prop of palette, and hot melt as adhesives that came from the inadequate handling of broke. In addition, we identified that poly(caprolactam) which is used for forming fabrics or press felts, could be mixed with the raw materials by accident and results in streak on coating.

  • PDF

Development of a Water-soluble Dry Lubricant for Nuclear Fuel Rod Protection (핵 연료봉 표면보호를 위한 수용성 건식 윤활제 개발)

  • Chung, Keunwoo;Kim, Young-Wun;Lee, Sangbong;Hong, Jongsung;Han, Sangjae;Oh, Myoungho
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2014
  • Currently, in order to resist the scratching of the fuel rod surface while fabricating the fuel assembly of the light-water nuclear reactor, we use a solution of nitrocellulose, an explosive material, as a dry lubricant along with its solvent. However, the demand for developing safe and harmless aqueous alternative materials for environment-conservation and field-worker safety has increased. In this study, we demonstrate the preparation of a novel aqueous resin composite using a formulation of aqueous polymeric resin, alcoholic solvent, and water. Subsequently, we characterize this composite on the basis of hardness, adhesive property, and water solubility using plates similar to the fuel rod material. The insertion test of a fuel rod coated with the YS-3 composite shows load values of $18.8-20.5kg/cm^2$, which is comparable with $18.8-20.5kg/cm^2$ of the nitrocellulose coating agent. In addition, the depth and width of longitudinal scratches caused by the YS-3 composite test are 50% higher than those of the standard. We can develop a harmless and safe aqueous dry lubricant to replace the existing NC products through field testing of 264 pieces of fuel rods, after producing 350 kg of the YS-3 prototype. The scratch test for the rod surface showed that weight of chip of YS-3 prototype was smaller than that of NC before and after solvent treatment, indicating the properties of YS-3 prototype was comparable to the counterpart.

ZnO Nanowires and P3HT Polymer Composite TFT Device (ZnO 나노선과 P3HT 폴리머를 이용한 유/무기 복합체 TFT 소자)

  • Moon, Kyeong-Ju;Choi, Ji-Hyuk;Kar, Jyoti Prakash;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • Inorganic-organic composite thin-film-transistors (TFTs) of ZnO nanowire/Poly(3-hexylthiophene) (P3HT) were investigated by changing the nanowire densities inside the composites. Crystalline ZnO nanowires were synthesized via an aqueous solution method at a low temperature, and the nanowire densities inside the composites were controlled by changing the ultrasonifiaction time. The channel layers were prepared with composites by spin-coating at 2000 rpm, which was followed by annealing in a vacuum at $100^{\circ}C$ for 10 hours. Au/inorganic-organic composite layer/$SiO_2$ structures were fabricated and the mobility, $I_{on}/I_{off}$ ratio, and threshold voltage were then measured to analyze the electrical characteristics of the channel layer. Compared with a P3HT TFT, the electrical properties of TFT were found to be improved after increasing the nanowire density inside the composites. The mobility of the P3HT TFT was approximately $10^{-4}cm^2/V{\cdot}s$. However, the mobility of the ZnO nanowire/P3HT composite TFT was increased by two orders compared to that of the P3HT TFT. In terms of the $I_{on}/I_{off}$ ratio, the composite device showed a two-fold increase compared to that of the P3HT TFT.

Preparation and Comparison the Physical Properties of Polyurethane-Urea Using Biomass Derived Isosorbide (바이오매스 유래 이소소르비드를 이용한 폴리우레탄-우레아의 제조 및 특성 비교)

  • Park, Ji-Hyeon;Park, Jong-Seung;Choi, Pil-Jun;Ko, Jae-Wang;Lee, Jae-Yeon;Sur, Suk-Hun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.165-176
    • /
    • 2019
  • Polyurethane-ureas(PUUs) were prepared from 4,4'-methylenebis(cyclohexyl isocyanate) and various diols including isosorbide. Isosorbide is starch-derived monomer that exhibit a wide range of glass transition temperature and are therefore able to be used in many applications. PUU was synthesized by a pre-polymer polymerization using a catalyst. Successful synthesis of the PUU was characterized by fourier transform-infrared spectroscopy. Thermal properties were determined by differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. It was found that by tuning isosorbide content in the resin, their glass transition temperature(Tg) slightly decreased. Physical properties were also determined by tensile strength and X-ray diffraction. There is no significant differences between petroleum-derived diol and isosorbide in XRD analysis. Moreover, their physical and optical properties were determined. The result showed that the poly(tetramethylene ether glycol)/isosorbide-based PUU exhibited enhanced tensile strength, transmittance, transparency and biodegradability compared to the existing diols. After 11 weeks composting, the biodegradability of blends increased in ISB-PUU. The morphology of the fractured surface of blend films were investigated by scanning electron microscopy.

Specific Binding of Streptavidin onto the Nonbiofouling Titanium/Titanium Oxide Surface through Surface-Initiated, Atom Transfer Radical Polymerization and Bioconjugation of Biotin

  • Kang, Sung-Min;Lee, Bong-Soo;Kim, Wan-Joong;Choi, In-Sung S.;Kil, Mun-Jae;Jung, Hyuk-Jun;Oh, Eu-Gene
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • Chemical modification of titanium/titanium oxide (Ti/$TiO_2$) substrates has recently gained a great deal of attention because of the applications of Ti/$TiO_2$-based materials to biomedical areas. The reported modification methods generally involve passive coating of Ti/$TiO_2$ substrates with protein-resistant materials, and poly(ethylene glycol) (PEG) has proven advantageous for bestowing a nonbiofouling property on the surface of Ti/$TiO_2$. However, the wider applications of Ti/$TiO_2$ based materials to biomedical areas will require the introduction of biologically active moieties onto Ti/$TiO_2$, in addition to nonbiofouling property. In this work, we therefore utilized surface-initiated polymerization to coat the Ti/$TiO_2$ substrates with polymers presenting the nonbiofouling PEG moiety and subsequently conjugated biologically active compounds to the PEG-presenting, polymeric films. Specifically, a Ti/$TiO_2$ surface was chemically modified to present an initiator for atom transfer radical polymerization, and poly(ethylene glycol) methacrylate (pEGMA) was polymerized from the surface. After activation of hydroxyl groups of poly(pEGMA) (pPEGMA) with N,N'-disuccinimidyl carbonate, biotin, a model compound, was conjugated to the pPEGMA films. The reactions were confirmed by infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle goniometry, and ellipsometry. The biospecific binding of target proteins was also utilized to generate micropatterns of proteins on the Ti/$TiO_2$ surface.