Browse > Article

Specific Binding of Streptavidin onto the Nonbiofouling Titanium/Titanium Oxide Surface through Surface-Initiated, Atom Transfer Radical Polymerization and Bioconjugation of Biotin  

Kang, Sung-Min (Department of Chemistry, KAIST)
Lee, Bong-Soo (Department of Chemistry, KAIST)
Kim, Wan-Joong (Department of Chemistry, KAIST)
Choi, In-Sung S. (Department of Chemistry, KAIST)
Kil, Mun-Jae (COS Biotech, Inc.)
Jung, Hyuk-Jun (COS Biotech, Inc.)
Oh, Eu-Gene (COS Biotech, Inc. and Graduate School of Global Entrepreneurship, Hoseo University)
Publication Information
Macromolecular Research / v.17, no.3, 2009 , pp. 174-180 More about this Journal
Abstract
Chemical modification of titanium/titanium oxide (Ti/$TiO_2$) substrates has recently gained a great deal of attention because of the applications of Ti/$TiO_2$-based materials to biomedical areas. The reported modification methods generally involve passive coating of Ti/$TiO_2$ substrates with protein-resistant materials, and poly(ethylene glycol) (PEG) has proven advantageous for bestowing a nonbiofouling property on the surface of Ti/$TiO_2$. However, the wider applications of Ti/$TiO_2$ based materials to biomedical areas will require the introduction of biologically active moieties onto Ti/$TiO_2$, in addition to nonbiofouling property. In this work, we therefore utilized surface-initiated polymerization to coat the Ti/$TiO_2$ substrates with polymers presenting the nonbiofouling PEG moiety and subsequently conjugated biologically active compounds to the PEG-presenting, polymeric films. Specifically, a Ti/$TiO_2$ surface was chemically modified to present an initiator for atom transfer radical polymerization, and poly(ethylene glycol) methacrylate (pEGMA) was polymerized from the surface. After activation of hydroxyl groups of poly(pEGMA) (pPEGMA) with N,N'-disuccinimidyl carbonate, biotin, a model compound, was conjugated to the pPEGMA films. The reactions were confirmed by infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle goniometry, and ellipsometry. The biospecific binding of target proteins was also utilized to generate micropatterns of proteins on the Ti/$TiO_2$ surface.
Keywords
titanium/titanium oxide; atom transfer radical polymerization; biological applications of polymers;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 A. Y. Fadeev and T. J. McCarthy, J. Am. Chem. Soc., 121, 12184 (1999)   DOI   ScienceOn
2 M. Gnauck, E. Jaehne, T. Blaettler, S. Tosatti, M. Textor, and H.-J. P. Adler, Langmuir, 23, 377 (2007)   DOI   ScienceOn
3 S. Tosatti, S. M. De Paul, A. Askendal, S. VandeVondele, J. A. Hubbell, P. Tengvall, and M. Textor, Biomaterials, 24, 4949 (2003)   DOI   ScienceOn
4 V. Zoulalian, S. Monge, S. Zurcher, M. Textor, J. J. Robin, and S. Tosatti, J. Phys. Chem. B, 110, 25603 (2006)
5 B. S. Lee, Y. S. Chi, K.-B. Lee, Y.-G. Kim, and I. S. Choi, Biomacromolecules, 8, 3922 (2007)   DOI   ScienceOn
6 W. J. Kim and S. W. Kim, Macromol. Res., 15, 100 (2007)   DOI
7 T. B. McPherson, H. S. Shim, and K. Park, J. Biomed. Mater. Res., 38, 289 (1997)   DOI   ScienceOn
8 F. F. Rossetti, M. Textor, and I. Reviakine, Langmuir, 22, 3467 (2006)   DOI   ScienceOn
9 E. F. Leonard, V. T. Turitto, and L. Vroman, Blood in Contact with Natural and Artificial Surfaces, New York Academy of Sciences, New York, 1987, Vol. 516, p 688
10 X. Fan, L. Lin, and P. B. Messersmith, Biomacromolecules, 7, 2443 (2006)   DOI   ScienceOn
11 B. S. Lee, J. K. Lee, W.-J. Kim, Y. H. Jung, S. J. Sim, J. Lee, and I. S. Choi, Biomacromolecules, 8, 744 (2007)   DOI   ScienceOn
12 Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, Adv. Funct. Mater., 18, 3395 (2008)   DOI   ScienceOn
13 S. T. Martin, J. M. Kesselman, D. S. Park, N. S. Lewis, and M. R. Hoffmann, Environ. Sci. Technol., 30, 2535 (1996)   DOI   ScienceOn
14 S. Tosatti, R. Michel, M. Textor, and N. D. Spencer, Langmuir, 18, 3537 (2002)   DOI   ScienceOn
15 P. Kingshott, H. Thissen, and H. J. Griesser, Biomaterials, 23, 2043 (2002)   DOI   ScienceOn
16 A. Hasneen, S. J. Kim, and H.-J. Paik, Macromol. Res., 15, 541 (2007)   DOI
17 J. Lahann, M. Balcells, T. Rodon, J. Lee, I. S. Choi, K. F. Jensen, and R. Langer, Langmuir, 18, 3632 (2002)   DOI   ScienceOn
18 E. S. Gawalt, M. J. Avaltroni, M. P. Danahy, B. M. Silverman, E. L. Hanson, K. S. Midwood, J. E. Schwarzbauer, and J. Schwartz, Langmuir, 19, 200 (2003)   DOI   ScienceOn
19 J.-B. Kim, M. L. Bruening, and G. L. Baker, J. Am. Chem. Soc., 122, 7616 (2000)   DOI   ScienceOn
20 B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, Biomaterials, 17, 137 (1996)   DOI   ScienceOn
21 Y.-P. Kim, B. S. Lee, E. Kim, I. S. Choi, D. W. Moon, T. G. Lee, and H.-S. Kim, Anal. Chem., 80, 5094 (2008)   DOI   ScienceOn
22 J. L. Dalsin, B.-H. Hu, B. P. Lee, and P. B. Messersmith, J. Am. Chem. Soc., 125, 4253 (2003)   DOI   ScienceOn
23 B. D. Ratner, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer-Verlag, Berlin, 2001
24 X. Fan, L. Lin, J. L. Dalsin, and P. B. Messersmith, J. Am. Chem. Soc., 127, 15843 (2005)   DOI   ScienceOn
25 Y.-W. Lee, S. M. Kang, K. R. Yoon, S.-P. Hong, B.-c. Yu, Y. S. Chi, H.-j. Paik, W. S. Yun, and I. S. Choi, Macromol. Res., 13, 356 (2005)   DOI
26 S. Y. Kim, S. H. Cho, Y. M. Lee, and L.-Y. Chu, Macromol. Res., 15, 646 (2007)   DOI
27 F. F. Rossetti, M. Bally, R. Michel, M. Textor, and I. Reviakine, Langmuir, 21, 6443 (2005)   DOI   ScienceOn
28 S. Jon, J. Seong, A. Khademhosseini, T.-N. T. Tran, P. E. Laibinis, and R. Langer, Langmuir, 19, 9989 (2003)   DOI   ScienceOn
29 I. Pelsoczi, K. Turzo, C. Gergely, A. Fazekas, I. Dekany, and F. Cuisinier, Biomacromolecules, 6, 3345 (2005)   DOI   ScienceOn
30 Y. K. Son, J. H. Kim, Y. S. Jeon, and D. J. Chung, Macromol. Res., 15, 527 (2007)   DOI
31 D. O. H. Teare, W. C. E. Schofield, R. P. Garrod, and J. P. S. Badyl, J. Phys. Chem. B, 109, 20923 (2005)   DOI   ScienceOn
32 D. M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine, Springer-Verlag, New York, 2001
33 S.-J. Xiao, M. Textor, N. D. Spencer, and H. Sigrist, Langmuir, 14, 5507 (1998)   DOI   ScienceOn
34 It has to be noted that a very similar approach to the functionalization of Ti/TiO2 was reported during the preparation of our manuscript. They used a chlorosilane-based initiator, 11-(2-bromo-2-methyl)propionyloxy)undecenyldimethylchlorosilane, and activated the hydroxyl group with 4-nitrophenyl chloroformate: J. E. Raynor, T. A. Petrie, A. J. García, and D. M. Collard, Adv. Mater., 19, 1724 (2007). In this work, we used a catechol-based initiator and activated the hydroxyl group with N,N'-disuccinimidyl carbonate by adopting our previously reported method   DOI   ScienceOn
35 E. S. Gawalt, M. K. Avaltroni, N. Koch, and J. Schwartz, Langmuir, 17, 5736 (2001)   DOI   ScienceOn
36 N. Adden, L. J. Gamble, D. G. Castner, A. Hoffmann, G. Gross, and H. Menzel, Langmuir, 22, 8197 (2006)   DOI   ScienceOn
37 J. M. Harris, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum Perss, New York, 1992