• Title/Summary/Keyword: polymer aggregate

Search Result 175, Processing Time 0.024 seconds

Influence of Surfactant on the Iodine Complex Formation of Some Non-ionic Polymers (비이온성 고분자의 Iodine 착물형성에 대한 계면활성제의 영향)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1031-1037
    • /
    • 2018
  • The formation of a complex between PVP or HPC and iodine was indicated by a red shift in the tri-iode band while PVA-iodine complex showed its characterized band around 500 nm in pure aqueous media. Addition of surfactant SDS resulted in a disapperance of the characteristic blue color of the PVA-iodine complex indicating that the complex is not formed in aqueous surfactant media. However in case of PVP or HPC, presence of the monomers of SDS favored the complex formation but in higher concentration, the micelles of SDS decreased the complex. Complexation was found to increase with increasing content of n-propanol in the system since n-propanol inhibits the formation of gels or microgels in the polymer solution. But in case of PVA-iodine complex, addition of n-propanol led to conversion of bigger polyiodides into smaller ones, which is indicative of increased intermolecular hydrogen bond interaction between propanol and PVA effecting a decrease in the PVA aggregate space.

Analysis of Thermal Expansion of Latex-Modified Concrete (라텍스개질 콘크리트의 열팽창 특성 분석)

  • Choi, Seong-Yong;Lee, Joo-Hyung;Lim, Hong-Beom;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.157-163
    • /
    • 2003
  • The properties of mechanics and durability of LMC have been performed actively. However, little studies on analysis and properties of thermal expansion has been on the temperature variation. Especially, the low of bonding strength and tensile cracking are caused by difference of thermal expansion between LMC and the substrate concrete. Therefore, this study focused on effect of thermal expansion behavior and properties of LMC according to temperature variation. To identify the property of thermal expansion of LMC, tests of modulus of thermal expansion were carried out at 28 days after casting specimen, subjected to temperature variation between $10^{\circ}C$ and $60^{\circ}C$. The results of this study showed the modulus of elastic of LMC was similar to that of ordinary portland concrete(OPC). It means that stresses caused by difference of modulus of elastic did not occur on interface between LMC and existing concrete. The modulus of thermal expansion of LMC had a little smaller than that of OPC. The modulus of thermal expansion of polymer modified concrete is generally larger than OPC, but the result of this test is disagree with the fact, which may be due to the humidity evaporation difference and aggregate properties.

  • PDF

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

Microencapsulation of Iron Oxide Nanoparticles and Their Application in Magnetic Levitation of Cells (산화철 나노입자의 마이크로캡슐화와 이를 이용한 세포의 자력부상 배양)

  • Lee, Jin Sil;Lee, Joon ho;Shim, Jae Kwon;Hur, Won
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.13-18
    • /
    • 2020
  • Iron oxide nanoparticles were microencapsulated using fibroin, a protein polymer of silk fiber, for theragnostic applications. The content of iron oxide was determined to be 4.28% by thermogravimetric analysis and 5.11% by magnetometer. A suspension of murine fibroblast 3T3 cells grown in medium supplemented with iron oxide-microcapsules turned clear in response to the magnetic force and the cells aggregated to the magnet direction. Neodymium magnets placed on the top of the culture dish, and attracted cells to the center of the culture surface. The cells collected on the culture surface aggregated to form a rough spheroid of 2 mm in a diameter after 72 h. In the outer layer of the cell aggregate, cells were relatively large and gathered together to form a dense tissue, but the central part was observed to undergo cell death due to the mass transfer restriction. In the outer layer, iron oxide-microcapsules were lined up like chains in the direction of magnetic force. Using microCT, it was demonstrated that the iron oxides inside the cell aggregate were not evenly distributed but biased to the magnetic direction.

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.

Evaluation of Aging Characteristics of Selected PMA using HP-GPC (HP-GPC를 이용한 폴리머개질 아스팔트의 노화특성 분석)

  • Kim, Kwang-Woo;Doh, Young-Soo;Amerkhanian, Serj N.
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.15-24
    • /
    • 2004
  • Oxidation causes increment of the quantity of large molecular size or LMS in asphalt and is a major reason for hardening of asphalt binder. An extended service life of pavement on a road is expected by reducing oxidation of binder. Oxidation of binder occurs during hot mixing with aggregates before placement on road and then during in-service after the asphalt pavement is constructed. Quantitative increase of LMS as result of aging after RTFO and PAV was analyzed based on the data from high-pressure gel-permeation chromatography (HP-GPC). Polymer modified asphalt (PMA) after RTFO procedure showed 20-30% increment in LMS and then after PAV procedure more than twice, although the percentage of increment was different according to asphalt brand and grade. The PMAs containing LDPE or SBS, which showed a great mechanical property improvement in previous studies, were selected for characterizing PMA aging In this study. Considerably reduced increment of LMS was observed from the PMA containing LDPE after RTFO and PAV procedures. The GPC result showing the binder with less LMS increment means that the asphalt while being mixed with LDPE was aged less during the aging treatment. The dispersed particle of LDPE in asphalt cement seems to disturb oxidative aging reaction and evaporation.

  • PDF

Adhesive Strength in Tension of SBR-Modified Cement Mortar with Self-Flowability Material for Floor-Finishing (자기 평활성 바닥 마감용 SBR 시멘트 모르타르의 인장부착강도)

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.549-556
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been practised in many countries like America, Japan and Germany and so on because of high performance and good modification effect of these. In this study, SBR, Polymer dispersion that widely used in situ is employed that the self-flowability may be induced in the cemen mortar. In order to comprehend and investigate the modification of cement mortar with self-flowability by SBR and properties and fracture mode of adhesive strength in tension of that, experimental parameter was set as SBR solid-Cement ratio(S/C) and Cement:Fine aggregate(C:F) and the experiments such as Unit weight, Flow, Consistency change, Crack resistance and Segregation that inform on the general properties have been done. In addition of that, Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by SBR did grow better as the ratio of SBR solid-Cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90min. after mixing. Adhesive strength in tension increased with continuity in the curing age and showed the maximum in case of C:F=1:1 and S/C=20%. As the increase of curing age, the fracture mainly happened in the concrete substrate and the interface between the specimen and concrete substrate.

Adhesive Properties of High Flowable SBR-modified Mortar for Concrete Patching Material Dependent on Surface Water Ratio of Concrete Substrate (콘크리트 피착체의 표면수율에 따른 단면복구용 고유동성 SBR 개질 모르타르의 부착특성)

  • Do, Jeong Yun;Kim, Doo Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.124-134
    • /
    • 2013
  • This study investigated the effect of surface water on concrete substrate on adhesive strength in tension of very high flowable SBR-modified cement mortar. The specimens were prepared with proportionally mixing SBR latex, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Polymer cement ratio (P/C) were 10, 20, 30, 50 and 75% and the weight ratio of fine aggregate to cement were 1:1 and 1:3. The specimens obtained with different P/C and C:F were characterized by unit weight, flow test, crack resistance and adhesion test. After basic tests, two mixtures of P/C=20% and 30% in case of C:F=1:1, and one mixture of P/C=50% in case of C:F=1:3 were selected, respectively. These three selected specimens were studied about the effect of surface water evenly sprayed on concrete substrate by a amount of 0, 0.006, 0.012, 0.017, 0.024g per unit area ($cm^2$) of concrete substrate surface The results show that surface water on concrete substrate increases the adhesive strength in tension of high flowable SBR-modified cement mortar and improve the flowability compared to the non-sprayed case.

Experimental Study for Shear Strength of Fiber-Reinforced-Polymer Reinforced Concrete Beams (GFRP 보강근 콘크리트 보의 전단성능에 대한 실험적 고찰)

  • Park, Jong-Sup;Park, Young-Hwan;You, Young-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.57-60
    • /
    • 2008
  • Compared with a steel-reinforced section with equal areas of longitudinal reinforcement, a cross section using FRP flexural reinforcement after cracking has a smaller depth to the neutral axis because of the lower axial stiffness. The compression region of the cross section is reduced, and the crack widths are wider. As a result, the shear resistance provided by both aggregate interlock and compressed concrete is smaller. Research on the shear capacity of flexural members without shear reinforcement has indicated that the concrete shear strength is influenced by the stiffness of the flexural reinforcement. In this research, experimental observations were made for the shear strength of FRP reinforced concrete beam and validity of existing predicting equations were examined. Test results showed that shear strength decreased as shear-span increased.

  • PDF

Synthesis of Alumina Nano Particles by PAA Gel Method from Kaolin (카올린으로부터 PAA Gel법에 의한 알루미나 나노 입자의 합성)

  • 김지경;이상근;신준식;홍성수;박성수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Non-aggregated nanoscale $\alpha$-Al$_2$O$_3$ powders were prepared successfully by polyacrylamine (PAA) gel method. The method was very simple and polymer network inhibited the aggregate of $\alpha$-Al$_2$O$_3$ powders. In this investigation, nanoparticles of $\alpha$-Al$_2$O$_3$ with a diameter of about 8-15 nm were fabricated by calcining the gel precusors with various concentrations of aluminum sulfate, acrylamide and N,N'-methylene-bis-acrylamide (BIS) in air at 110$0^{\circ}C$ for 2 h. The molar ratio of aluminum sulfate to acrylamide did not have any influence on the size of particles. On the other hand, as the molar ratio of BIS to acrylamide increased, the size of nanoparticles decreased.