DOI QR코드

DOI QR Code

Influence of Surfactant on the Iodine Complex Formation of Some Non-ionic Polymers

비이온성 고분자의 Iodine 착물형성에 대한 계면활성제의 영향

  • Ahn, Beom-Shu (Division of Life Science & Chemistry, Dae-Jin University)
  • 안범수 (대진대학교 과학기술대학 생명화학부)
  • Received : 2018.11.29
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

The formation of a complex between PVP or HPC and iodine was indicated by a red shift in the tri-iode band while PVA-iodine complex showed its characterized band around 500 nm in pure aqueous media. Addition of surfactant SDS resulted in a disapperance of the characteristic blue color of the PVA-iodine complex indicating that the complex is not formed in aqueous surfactant media. However in case of PVP or HPC, presence of the monomers of SDS favored the complex formation but in higher concentration, the micelles of SDS decreased the complex. Complexation was found to increase with increasing content of n-propanol in the system since n-propanol inhibits the formation of gels or microgels in the polymer solution. But in case of PVA-iodine complex, addition of n-propanol led to conversion of bigger polyiodides into smaller ones, which is indicative of increased intermolecular hydrogen bond interaction between propanol and PVA effecting a decrease in the PVA aggregate space.

수용성 비이온고분자인 Polyvinylalcohol (PVA), Polyvinylpyrrolidone (PVP), Hydroxypropyl cellusoe (HPC)와 iodine과의 착물 형성에 대한 계면활성제의 영향을 알아보기 위해 Sodiumdodecylsulfate을 포함하는 수용액에서 이들 사이의 반응을 수행하였다. PVP와 HPC에서 tri-iodide band의 적색 이동에 의하여 착물이 만들어졌다는 것을 알게되었고, PVA-iodine 착물에서는 500 nm 부근에서 고유의 특색있는 띠를 나타내었다. SDS 계면활성제의 존재는 PVA-iodine 착물의 파괴를 가져왔고, 고유의 푸른색도 사라지게 만들었다. 그러나 SDS 단량체는 PVP, HPC와 iodine의 착물 형성을 도와주는 경향을 나타내었다. 고분자 용액에서 겔이 만들어지는 것을 방해하는 n-propanol은 고분자-iodine 착물이 형성되는 것을 도와주었다. SDS가 있을 때와 없을 경우의 영향을 알아보기 위해 순수한 HPC와 HPC-iodine 착물을 만들고 이들의 성질을 조사하였다.

Keywords

HGOHBI_2018_v35n4_1031_f0001.png 이미지

Fig. 1. UV-Visible absorption spectra of polymer mixtures in aqueous and aqueous surfactant solutions with PVA solution as reference ; (a) I2-KI solution in water (b) PVA-iodine mixture in water (c) in 4 mM SDS (d) in 12 mM SDS.

HGOHBI_2018_v35n4_1031_f0002.png 이미지

Fig. 2. UV-Visible absorption spectra of polymer mixtures in aqueous and aqueous surfactant solutions with PVP solution as reference ; (a) I2-KI solution in water (b) PVP-iodine mixture in water (c) in 4 mM SDS (d) in 12 mM SDS.

HGOHBI_2018_v35n4_1031_f0003.png 이미지

Fig. 3. UV-Visible absorption spectra of polymer mixtures in aqueous and aqueous surfactant solutions with HPC solution as reference ; (a) I2-KI solution in water (b) HPC-iodine mixture in water (c) in 4 mM SDS (d) in 12 mM SDS.

HGOHBI_2018_v35n4_1031_f0004.png 이미지

Fig. 4. Absorption spectra of PVA-iodine complex in aqueous solution containing different percentage of n-propanol ; (a) 2 % (b) 5 % (c) 8 %.

HGOHBI_2018_v35n4_1031_f0005.png 이미지

Fig. 5. Absorption spectra of PVP-iodine and HPC-iodine complexes in aqueous solution containing different percentage of n-propanol ; (a) 2 % (b) 5 % (c) 8 %.

HGOHBI_2018_v35n4_1031_f0006.png 이미지

Fig. 6. Infrared spectra of gels ; (a) HPC (b) HPC in 6 mM SDS (c) HPC-iodine (d) HPC-iodine in 6 mM SDS.

HGOHBI_2018_v35n4_1031_f0007.png 이미지

Fig. 7. DSC profile of gels ; (a) HPC (b) HPC in 6 nM SDS (c) HPC-iodine (d) HPC-iodine in 6 mM SDS.

References

  1. T. Mori, Y. Okada, and H. Kamiya, "Effects of surface modification of particles on interaction foces and dispersibility", Adv. Powder Tech., Vol. 27, pp. 830-839 (2016). https://doi.org/10.1016/j.apt.2015.10.020
  2. H. Y. Lee, "Analyitical characterization of aza alkaloids in the biosynthesis", J. of Kor. Oil Chem. Soc., Vol. 29, No. 2, pp. 248-256 (2010).
  3. H. Salminen, S. Aulbach, and C. Tedeshe, "Influence of surfactant composition on physical and oxidative stability of lipid particles", Colloids Surf. B Biointerface, Vol. 122, No.1, pp. 46-55 (2014). https://doi.org/10.1016/j.colsurfb.2014.06.045
  4. S. J. Lee, J. H. Kim, and J. Y. Song, "A study on the removal of nitrate nitrgen by redox reaction of zink in acidic atmosphere", J. Kor. Oil Chem. Soc., Vol. 33, No. 3, pp. 441-446 (2016). https://doi.org/10.12925/jkocs.2016.33.3.441
  5. C. H. Kim, Y. S. Lim, and H. J. Kim, "Chemical stability and electrical performance of layered zinc tin oxide", ACS Appl. Mater. Interfaces, Vol. 55, No.13, pp. 6108-6112 (2013).
  6. M. J. Rang, "Trend on development and application of polymeric surfactants", J. Kor. Oil Chem. Soc., Vol. 30, No. 3, pp. 546-567 (2015).
  7. A. J. Olenic, "Silicone emulsions and surfactants", J. Surfact. Deterg., Vol. 3, No. 3, pp. 387-393 (2000). https://doi.org/10.1007/s11743-000-0143-y
  8. J. S. Park and J. C. Lim, "Investigation on a zwitterionic surfactant having ethylene oxide", Appl. Chem. Eng., Vol. 10, No. 2, pp. 605-608 (2006).
  9. Y. Jin, S. Tian, J. Guo, and S. Gao, "Synthesis, characterization and exporatory application of anionic surfactant estersulfonate from waste oil", J. Surfactants Deterg, Vol. 19, pp. 467-475 (2016). https://doi.org/10.1007/s11743-016-1813-z
  10. S. Lee, B. J. Kim, J. G. Lee, and J. C. Lim, "Synthesis and characterization of interfacial properties of sorbitan laurae surfactant", Appl. Chem. Eng.,Vol. 22, No. 1, pp 37-44 (2011).
  11. T. Geng, C. Chang, Y. Jiang, and Y. Wang, "Synergistic effect of binary mixtures contained newly ionic surfactant", J. Mol. Liq., Vol. 232, pp. 36-44 (2017). https://doi.org/10.1016/j.molliq.2017.02.055
  12. C. Lu, M. Li, and B. Yang, "High refractive index organic inorganic hybrid coatingswith nanocrystals", Colloi. and Surfa. A Physicochem. Eng., Vol. 328 pp. 67-72 (2008). https://doi.org/10.1016/j.colsurfa.2008.06.026
  13. Z. Peng, Q. WU, T. Cai, and K. Chen, "Synthesis and properties of hydrolysis resistant trioxane surfactants", Colloids and Surfaces A, Vol. 342, pp. 127-131 (2009). https://doi.org/10.1016/j.colsurfa.2009.04.028
  14. W. Wang, Z. Du, Q. Cao, and L. Wang, "Properties and glucosamide based tetrasiloxsane surfactants", J. Disp. Sci. Tech., Vol. 33, pp. 654-659 (2012). https://doi.org/10.1080/01932691.2011.579824
  15. C, S. Kweon, D. W. Kim, and S. T. Noh, "Synthesis and physical properties of oligopropylene oxide allyl methyl ether", J. Ind., Eng. Chem., Vol. 9, No. 2, pp. 146-152 (2003).
  16. D. W. Kim, C. H. Lim, and S. T. Noh, "Surface active properties and LCST behaviour of ol;igo propylene oxide sufactants in aqueous solutions", Bull. Kor. Chem. Soc., Vol. 25, No. 8, pp. 1182-1188 (2004). https://doi.org/10.5012/bkcs.2004.25.8.1182
  17. J. Acker and K. Bohmhammel, "Thermodynamics Assessment of copper catalysed synthesis of methylchlorosilanes", J. Organemet., Chem., Vol. 693, pp. 2483-2493 (2008). https://doi.org/10.1016/j.jorganchem.2008.04.026
  18. J. H. Seo, S. J. Park, and S. H. Um, "Swelling and metal ion adsorption of conjugated polyasparte hydrogels", J. of Polymer and Environment, Vol. 23, No. 3 pp. 424-430 (2015). https://doi.org/10.1007/s10924-015-0724-9
  19. G, S. Sailaka, P. Ramesh, and H. Varmars, "Effect of surface functionalization on the physomechanical properties of a biofunctional polymers", J. of Appl. Poly. Soc., Vol. 121, No. 6, pp. 3509-3515 (2011). https://doi.org/10.1002/app.34157
  20. E. R. George, A. Fogel, and S. E. Morgan, "Functionalized hollow nanoparticles for incorporation in hydrogels", Polymer Bulletin, Vol. 73, No. 4, pp. 1135-1140 (2016). https://doi.org/10.1007/s00289-015-1539-5