• Title/Summary/Keyword: polymer aggregate

Search Result 175, Processing Time 0.022 seconds

Preparation of PET Nanocomposites: Dispersion of Nanoparticles and Thermal Properties

  • Her, Ki-Young;Kim, Dae-Heum;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.71-73
    • /
    • 2008
  • The development of polymer/inorganic nanocomposites has attracted a great deal of interest due to the improved hybrid properties derived from the two different components. Various nanoscale fillers have been used to enhance polymer mechanical and thermal properties, such as toughness, stiffness, and heat resistance. The effects of the filler on the final properties of the nanocomposites are highly dependent on the filler shape, particle size, aggregate size, surface characteristics, polymer/inorganic interactions, and degree of dispersion. In this paper, we describe the influence of different $CaCO_3$ dispersion methods on the thermal properties of polyethylene terephthalate (PET)/$CaCO_3$ composites: i.e., the adsorption of $CaCO_3$ on the modified PET surface, and the hydrophobic modification of the hydrophilic $CaCO_3$ surface. We prepared PET/$CaCO_3$ nanocomposites using a twin-screw extruder, and investigated their thermal properties and morphology.

Fundamental Properties of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 기초적 성질)

  • 채경희;연구석;이윤수;이기원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1139-1144
    • /
    • 2000
  • Recent advance in material technology has accelerated the development of high strength concrete using lightweight artificial aggregates. The lightweight concrete has many advantages that the reduction of dead lads and the increase in load capacity can ofter. In this study, lightweight polymer concrete using unsaturated polyester resin and lightweight aggregate were prepared and tested for testing the physical and the mechanical properties. The compressive strengths of lightweight polymer concretes with specific gravities from 1.32 to 1.78 were compressive strength of 250 to 470 $kgf/cm^2$ and flexural strengths were measured to be in the range of a third to a quarter of compressive strength

Stress-Strain Response of Polymer-Impregnated Concrete in Uniaxial and Biaxial Compression (일축 및 이축압축을 받는 폴리머침투콘크리트의 응력-변형률 특성)

  • 변근주;이상민;노병철;이용진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.93-98
    • /
    • 1991
  • Polymer-Impregnated Concrete(PIC) can be considered composite material of concrete and polymer and has superior properties compared to conventional cement concrete, such as strength, stiffness, toughness, durability, water-proofing, chemical resistance. However, so far, the usage of PIC has been limited to repairing materials and non-structural applications, due to the lack of the design criteria and the analytical model to determine structural behavior. The objective of this study is to define the stress-strain response and strength characteristics of PIC in uniaxial and various biaxial compressive loading. On the bases of experimental results, general stress-strain relation, biaxial failure envelope and strength evaluation formular of PIC made with normal aggregate and methylmethacrylate(MMA) are proposed.

  • PDF

Evaluation of Poisson's Ration of Polymer-Modified Asphalt Concretes (폴리머 개질 아스팔트 콘크리트의 푸아송비에 관한 실험적 연구)

  • 김광우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.104-105
    • /
    • 1999
  • This study was performend to examine Poisson's ration of polymer-modified asphalt concrete due to temperature variatino . Asphalt binder used in this study was an AC85-100, penetration grade of 85-100, and polymer for modifying asphalt were domestic LDPE(Low-density polyethylene) and SBS(Styrene-butadiene-styrene). Aggregate was a crushed gneiss which was most widely used in the middle part of Korea. Using these materias, asphalt mixture slab(340mm$\times$240mm$\times$80mm) with optimum asphalt content from mix design was made and cut into square pillar (80mm$\times$80mm$\times$160mm). Poisson's ration was measured in various temperture (-15$^{\circ}C$, -1$0^{\circ}C$, -5$^{\circ}C$,$0^{\circ}C$,5$^{\circ}C$,1$0^{\circ}C$ and 2$0^{\circ}C$) under the load of one axis repeated compression mode. Poisson's ration of normal asphalt polymer modified asphalt mixtures in normal temperatures. This indicated that AP mixture was more susceptible to temperature effects. From regression aalysis of experimental results, the difference of Poisson's ration between normal and low temperature showed that polymer modified asphalt mixture were lower than AP mixture except for SBS modified asplat mixture.

  • PDF

Performance Evaluation of Recycled Aggregate Concrete Block Reinforced with GFRP (GFRP로 보강된 순환골재콘크리트 블록의 성능평가)

  • Kim, Yongjae;Lee, Hyeongi;Park, Cheolwoo;Sim, Jongsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6565-6574
    • /
    • 2013
  • Precast concrete blocks are used mainly for score protection, slope protection and riverbed structure protection, etc. Because these concrete blocks are exposed to water or wetting environments, the steel rebar used as reinforcements in concrete blocks can corrode easily. Corrosion of the steel rebar tends to reduce the performance and service life of the concrete blocks. In this study, Glass Fiber Reinforced Polymer(GFRP) rebar, which does not corrode, was applied instead of a steel rebar to prevent performance degradation of the blocks. Recycled concrete aggregate and high early strength cement(HESC) were used in the concrete mix for field applicability. The experiment results showed that the workability and form removal strength of the recycled aggregate concrete using HESC showed comparable results to normal concrete and the compressive strength at 28 days increased by about 18% compared to normal concrete. The load resistance capacity of the recycled aggregate concrete blocks reinforced with a GFRP rebar increased by approximately 10~30% compared to common concrete block.

Heating Value and Noxious Gases Generation of Sandwich Panel Core using Artifical Lightweight Aggregate (다공성 경량골재를 충전재로 활용한 샌드위치 패널 심재의 발열량 및 유해가스 배출특성)

  • 노정식;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.261-266
    • /
    • 2003
  • This study is to investigate the heating value and noxious gases generation such as CO, NO and $SO_2$ known as dangerous gas for human from specimen made of cement and lightweight aggregate. The most quanity of CO gas is generated in EPS(Expanded Poly Styrene), core of commercial sandwich panel. Although specimens mainly composed of cement discharged the relatively less CO gas than organic core such as EPS, specimens which SBR was added discharged the very much amount of CO gas similar to EPS and especially, specimens including foaming agent, gas foaming agent or redipersible powder of VA/VeoVa showed the good properties in the generation of CO gas. From the standpoint of the generation of NO and $SO_2$ gas, both the core of commercial sandwich panel such as EPS, Glass wool and specimens made with polymer dispersion such as St/BA and SBR discharge the very much amount of NO and $SO_2$ gas in comparison of the other specimens. From this study, it was confirmed that organic materials such as core of commercial sandwich panel dischared much more noxious gas than specimens composed of cement and inorganic lightweight aggregate.

  • PDF

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Performance Evaluation of Polymer Cementitious Interior Finish Using Light-Weight Aggregates Containing Pyroligneous Liquid (목초액 담지체를 골재로 사용한 폴리머 시멘트계 내장마감재의 성능평가)

  • Lee, Chae-Young;Kim, Joo-Young;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.218-219
    • /
    • 2014
  • The purpose of this study is to develop eco-friendly internal material of acrylic emulsion mortars using light-weight aggregate carrier which contains pyroligneous liquid. Four types of light-weight aggregates (vermiculite, perlite, charcoal, zeolite) that are widely used in building materials are selected and the properties such as adhesion, water absorption coefficient, antibiosis, crack and impact resistance are evaluated in accordance with KS F 4715. As a result, the properties of acrylic emulsion mortars using light-weight aggregate carrier are satisfied with KS requirements. The antibiosis is improved with increasing zeolite light-weight carrier content.

  • PDF

Mechanical Properties and Durability of Abrasion of EVA Concrete Reinforced Steel Fiber (강섬유 보강 EVA 콘크리트의 역학적 특성 및 내마모성)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.45-54
    • /
    • 2014
  • This study was performed to evaluate compressive strength, flexural strength, static modulus of elasticity, stress-strain ratio and durability of abrasion on EVA concrete reinforced steel fiber (SF) in order to use hydraulic structures, underground utilities, offshore structures and structures being applied soil contaminated area. It is used ordinary portland cement, crushed coarse aggregate, nature fine aggregate, EVA redispersible polymer powder, superplasticizer and deforming agent to find optimum mix design of EVA concrete reinforced steel fiber. EVA concrete reinforced SF was effected on the improvement of mechanical properties and durability of abrasion.

A Study on the Development of Polymer Concrete Curbs Using Recycled Aggregate (재생골재를 사용한 폴리머콘크리트 경계블록의 개발 연구)

  • 최영준;박준철;윤요현;김상연;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1127-1132
    • /
    • 2000
  • The purpose of this study is to investigate the utilization of recycled fine aggregates as a material to apply to concrete curbs. This study also intends to improve the quality of recycling aggregates by adding an excellent polyester resin for the improvement of durability, anti-corrosiveness, and strength. The experimental mixing proportion was planned to acquire optimum workability and filling capability of resin mortar mixed with the recycled fine aggregate. The curbs products made for test have four type cross sections. Their flexible fracture load is 1,918~6,883kgf and their weight is 15.31~31.61kg.

  • PDF