• Title/Summary/Keyword: polylactic acid (PLA)

Search Result 86, Processing Time 0.025 seconds

A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication (FFF 방식으로 제작된 PLA의 열화에 따른 선형탄성 및 초탄성 모델의 비교에 관한 연구)

  • Choi, Na-Yeon;Shin, Byoung-Chul;Zhang, Sung-Uk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2020
  • Fused filament fabrication (FFF) is a process extruding and stacking materials. PLA materials are one of the most frequently used materials for FFF method of 3D printing. Polylactic acid (PLA)-based materials are among the most widely used materials for FFF-based three-dimensional (3D) printing. PLA is an eco-friendly material made using starch extracted from corn, as opposed to plastic made using conventional petroleum resin; PLA-based materials are used in various fields, such as packaging, aerospace, and medicines. However, it is important to analyze the mechanical properties of theses materials, such as elastic strength, before using them as structural materials. In this study, the reliability of PLA-based materials is assessed through an analysis of the changes in the linear elasticity of these materials under thermal degradation by applying a hyperelastic analytical model.

Three-dimensional printing of temporary crowns with polylactic acid polymer using the fused deposition modeling technique: a case series

  • Eun-Kyong Kim;Eun Young Park;Sohee Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.3
    • /
    • pp.302-307
    • /
    • 2023
  • With recent developments in digital dentistry, research on techniques and materials for three-dimensional (3D) printing is actively underway. We report the clinical applications and outcomes of 3D printing of temporary crowns fabricated with polylactic acid (PLA) using a fused deposition modeling (FDM) printer. Five participants were recruited from among patients scheduled to be treated with a single full-coverage crown at a dental clinic in a university medical center from June to August 2022. We used 3D-printed crowns fabricated with PLA using an FDM printer as temporary crowns and were assessed for discomfort, fracture, and dislodging. The 3D-printed temporary crowns were maintained without fracture, dislodging, or discomfort until the permanent prosthesis was ready. The average time required for printing the temporary crowns was approximately 7 minutes. The 3D printing of temporary crowns with PLA using an FDM printer is a convenient process for dentists. However, these crowns have some limitations, such as rough surface texture and translucency; therefore, the 3D printing process should be improved to produce better prostheses.

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins

  • Lee, So-Hee;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.6
    • /
    • pp.653-662
    • /
    • 2012
  • This study measured the effect of general pre-treatment on PLA fabrics to confirm the benefits of enzymatic processing on PLA fabrics in the textile industry as well as evaluated the hydrolytic activities of three lipases. The effects of lipase hydrolysis were analyzed through moisture regain, dyeing ability, tensile strength, and surface morphology. As a result, PLA fibers were easily damaged by a low concentration of sodium hydroxide and a low treatment temperature. The optimal treatment conditions of Lipase from Candida cylindracea were pH 8.0, $40^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Candida rugosa were pH 7.2, $37^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Porcine pancreas were pH 8.0, $37^{\circ}C$, and 2,000 U. The moisture regain and dyeing ability of PLA fabrics increased and the tensile strength of PLA fabrics decreased. The results of surface morphology revealed that there were some cracks due to hydrolysis on the surface of the fiber.

Development and Application of Cellulose Nanofiber Powder as a Nucleating Agent in Polylactic Acid (나노셀룰로오스 분말 개발과 폴리젖산 내 핵제 적용 연구)

  • Sanghyeon Ju;Ajeong Lee;Youngeun Shin;Teahoon Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.51-57
    • /
    • 2023
  • Because of the global pollution caused by plastic disposal, demand for eco-friendly transformation in the packaging industry is increased. As part of that, the utilization of polylactic acid (PLA) as a food packaging material is increased. However, it is necessary to improve the crystallinity of PLA by adding nucleating agents or to improve the modulus by adding fillers because of the excessive brittleness of the PLA matrix. Thus, the cellulose nanofiber (CNF) was fabricated and dried to obtain a powder form and applied to the CNF/PLA nanocomposite. The effect of CNF on the morphological, thermal, rheological, and dynamic mechanical properties of the composite was analyzed. We can confirm the impregnated CNF particle in the PLA matrix through the field emission scanning electron microscope (FE-SEM). Differential scanning calorimetry (DSC) analysis showed that the crystallinity of not annealed CNF/PLA nanocomposite was increased approximately 2 and 4 times in the 1st and 2nd cycle, respectively, with the shift to lower temperature of cold crystallization temperature (Tcc) in the 2nd cycle. Moreover, the crystallinity of annealed CNF/PLA nanocomposite increased by 13.4%, and shifted Tcc was confirmed.

UV-curing Behaviors and Mechanical Properties of UV-cured Polylactic Acid (PLA)

  • Lee, Seung-Woo;Park, Ji-Won;Park, Cho-Hee;Kim, Hyun-Joong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.134-140
    • /
    • 2013
  • UV curing was introduced via a chemical treatment by adding small amounts of a hexafunctional acrylic monomer and a photoinitiator to improve the mechanical properties of PLA. This study also employed a semi-interpenetrated structured polymer network through the process of UV-curing. The UV curing behaviors were investigated using FTIR-ATR spectroscopy and gel fraction determination. Also, the tensile strength was investigated with different hexafunctional acrylic monomer contents and UV doses. The results showed that the crosslinking of UV-induced chemically treated PLA started at a low content of hexafunctional acrylic monomer, resulting in a significant improvement of the mechanical properties compared to those of neat PLA due to crosslinking.

A Study on the Effect of CNT on Crystallization Kinetics and Hydrolytic Degradation of PKA/CNT Composite (PLA/CNT 복합재료의 결정화 특성 및 가수분해에 미치는 CNT 영향에 대한 연구)

  • Li, Mei-Xian;Kim, Sung-Ha;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.5-10
    • /
    • 2011
  • As environmental pollution getting worse, biodegradable materials have been drawn more attention than ever. In this study, polylactic acid (PLA)/carbon nanotubc (CNT) nanocomposites were manufactured via extrusion molding and injection molding, In order to change the crystallinity, annealing treatment was done for different time span, Crystallization kinetics of PLA was analyzed by differential scanning calorimeter (DSC), and it was confirmed that a proper amount of CNT can increase the crystallization rate of PLA. In addition, the presence of CNT significantly accelerates the hydrolytic degradation rate of PLA, however, it decreases with the increase of crystallinity. The reason is that degradation may occur in the PLA/CNT interface easily, and the molecular structure of the composite becomes dense with the increase of crystallinity.

Polylactic Acid Coating Affects the Ring Crush Strength of Linerboards

  • Lee, Jun-Ho;Rhim, Jong-Whan
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.5 s.118
    • /
    • pp.54-59
    • /
    • 2006
  • Paperboards used for linerboard of corrugated fiberboard box were coated with different concentrations of polylactic acid (PLA) solution and the effects of harsh environmental conditions such as high humidity and temperature (96% RH at $30^{\circ}C$ for up to 5 days), and freeze-thaw ($-20^{\circ}C$ for a day and then thaw at room temperature for 30 min) conditions on the ring crush (RC) strength of the boards were investigated. One to five percent PLA solutions were coated onto SC manila linerboard ($20{\times}27cm$) using a No. 20 wire bar coater and the ring crush strength was measured using a computer-controlled Advanced Universal Testing System in accordance with TAPPI Test Method T 822 om-93. The RC strength increased significantly when the concentration of coating solution increased and appreciable changes were found when the concentration increased from 0 to 2% (P<0.05). Similar pattern of results was found after 5-day storage at $30^{\circ}C$ and 96% RH. Although such highly humid condition increased moisture content in the samples up to 3.95 from 0.97 times, the RC strength decreased in the range from 29.9 to 48.5%. The freeze-thaw treatment increased the moisture content only up to 1.27% and the reduction in the RC strength ranged from 21.1 to 28.1 %. The results were promising: the samples coated with 5% PLA solution showed 29.9% reduction in the RC strength while that of control was 48.5% during highly humid condition stated above.