Browse > Article
http://dx.doi.org/10.5850/JKSCT.2012.36.6.653

Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins  

Lee, So-Hee (Dept. of Clothing & Textiles, Sookmyung Women's University)
Song, Wha-Soon (Dept. of Clothing & Textiles, Sookmyung Women's University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.36, no.6, 2012 , pp. 653-662 More about this Journal
Abstract
This study measured the effect of general pre-treatment on PLA fabrics to confirm the benefits of enzymatic processing on PLA fabrics in the textile industry as well as evaluated the hydrolytic activities of three lipases. The effects of lipase hydrolysis were analyzed through moisture regain, dyeing ability, tensile strength, and surface morphology. As a result, PLA fibers were easily damaged by a low concentration of sodium hydroxide and a low treatment temperature. The optimal treatment conditions of Lipase from Candida cylindracea were pH 8.0, $40^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Candida rugosa were pH 7.2, $37^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Porcine pancreas were pH 8.0, $37^{\circ}C$, and 2,000 U. The moisture regain and dyeing ability of PLA fabrics increased and the tensile strength of PLA fabrics decreased. The results of surface morphology revealed that there were some cracks due to hydrolysis on the surface of the fiber.
Keywords
Polylactic acid; PLA; Lipase; Finishing; Enzymatic treatment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Vertomen, M. A. M. E., Nierstrasz, V. A., van der Verr, M., & Warmoeskerken, M. M. C. G. (2005). Enzymatic surface modification of poly (ethylene terephthalate). Journal of Biotechnology, 120(4), 376-386.   DOI   ScienceOn
2 Yoon, M. Y., Kellis, J., & Poulose, A. J. (2002). Enzymatic modification of polyester. AATCC Review, 8, 33-36.
3 Kamm, B., Kamm, M., Gruber, P. R., & Kromus, S. (2008). Biorefineries-industrial processes and products. In: B. Kamm, P. R. Gruber, & M. Kamm (Eds.), Ullmann's encyclopedia of industrial chemistry (pp. 1-40). Weinheim: Wiley-VCH.
4 Lee, S. H., Kim, H. R., Lee, B. H., & Song, W. S. (2010). Enzymatic hydrolysis of chitosan fiber using cellulase and papain. Textile Science and Engineering, 47(3), 212-221.
5 Lee, S. H., & Song, W. S. (2010). Surface modification of polyester fabrics by enzyme treatment. Fibers and Polymers, 11(1), 54-59.   DOI   ScienceOn
6 Lee, S. H., & Song, W. S. (2011a). Enzymatic hydrolysis of polylactic acid fiber. Applied Biochemistry and Biotechnology, 164(1), 89-102.   DOI
7 Lee, S. H., & Song, W. S. (2011b). Hydrolysis of polylactic acid fiber by lipase from porcine pancreas. Journal of Korean Society of Clothing and Textiles, 35(6), 670-677.   DOI   ScienceOn
8 Lee, S. H., Song, W. S., & Kim, H. R. (2009). Cutinase treatment of cotton fabrics. Fibers and Polymers, 10 (6), 802-806.   DOI   ScienceOn
9 Mayumi, D., Akutsu-Shigeno, Y., Uchiyama, H., Nomura, N., & Nakajima-Kambe, T. (2008). Identification and characterization of novel poly (DL-lactic acid) depolymerases from metagenome. Applied Microbiology and Biotechnology, 79(5), 743-750.   DOI
10 Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317-1324.   DOI   ScienceOn
11 Sawada, K., Urakawa, M., & Ueda, M. (2007). Modification of polylactic acid fiber with enzymatic treatment. Textile Research Journal, 77(11), 901-905.   DOI
12 Scheyer, L. E., & Chiweshe, A. (2001). Application and performance of disperse dyes on polylactic acid (PLA) fabric. AATCC Review, 7, 44-48.
13 Eberl, A., Heumann, S., Kotek, R., Kaufmann, F., Mitsche, S., Cavaco-Paulo, A., & Gubitz, G. M. (2008). Enzymatic hydrolysis of PTT polymers and oligomers. Journal of Biotechnology, 135(1), 45-51.   DOI   ScienceOn
14 Aly, A. S., Moustafa, A. B., & Hebeish, A. (2004). Biotechnological treatment of cellulosic textiles. Journal of Cleaner Production, 12(7), 697-705.   DOI   ScienceOn
15 Averous, L. (2002). Polylactic acid: Synthesis, properties and applications. In M. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources (pp. 433-450). Amsterdam: Elsavier.
16 Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced Materials, 12 (23), 1841-1846.   DOI   ScienceOn
17 Cavaco-Paulo, A. (1998). Processing textile fibers with enzymes: An overview. In K. E. Erriksson & A. Cavaco-Paulo (Eds.), Enzyme application in fiber processing (pp. 180-189). Washington D.C.: American Chemical Society.
18 Farrington, D. W., Lunt, J., Davies, S., & Blackburn, R. S. (2005). Poly(lactic acid) fibers. In R. S. Blackburn (Ed.) Biodegradable and sustainable fibres (pp. 191-220). Cambridge: Woodhead Publishing Limited.
19 Guebitz, G. M., & Cavaco-Paulo, A. (2008). Enzymes go big: Surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 26(1), 32-38.   DOI   ScienceOn
20 Hsieh, Y. L., & Cram, L. A. (1998). Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Textile Research Journal, 68(5), 311-319.   DOI   ScienceOn
21 Kadolph, S. J. (2004). Textiles (11th ed.). New Jersey: Prentice Hall.
22 Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64(2), 137-145.   DOI
23 Tokiwa, Y., & Jarerat, A. (2004). Biodegradation of poly (L-lactide). Biotechnology Letters, 26(10), 771-777.   DOI   ScienceOn
24 Akin, D. E., Slomczynski, D., Rigsby, L. L., & Eriksson, K. L. (2002). Retting flax with endopolygalacturonase from Rhizopus Oryzae. Textile Research Journal, 72(1), 27-34.   DOI
25 Steinbichel, A. (2002). Biopolymers: biology, chemistry, biotechnology, applications. Weinheim: Willy-VCH.