• Title/Summary/Keyword: polyimide processing

Search Result 40, Processing Time 0.043 seconds

Micromachined Properties of a polyimide by a femtosecond laser (펨토초 레이저에 의한 폴리이마이드 가공 특성)

  • Min, Chul-Ki;Lee, Man-Seop
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.20-25
    • /
    • 2008
  • Polyimide is one of the useful materials in industry. The surface treatment of polyimide by a femtosecond laser can help accurate and fine fabrication of microstructure. And it can change the transmittance and reflectance of polyimide, too. We put femtosecond laser pulses on polyimide for rectangular or square type surface treaments and observe the change of transmittance and reflectance. Pulsewidth is 172 fs, laser power changes for fabrication are from 5 mW to 20 mW, and transmittance and reflectance are measured under 20m W, 300m W, and 920 mW. Pulse patterning is stable and almost no unwanted surface damage is shown. As power increases, working depth increases but working line width does not increase significantly. As speed changes, they also have same results. It shows the efficiency of a femtosecond laser is good and thermal damage is small for polyimide.

  • PDF

Photothermal and Photochemical Investigation on Laser Ablation of the Polyimide by 355nm UV Laser Processing (355nm UV 레이저 가공에 의한 폴리이미드의 광화학적 및 광열적 어블레이션에 관한 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.147-152
    • /
    • 2007
  • UV laser ablation of polyimide is a combination of photochemical and photothermal mechanism. Photochemical mechanism is that molecular bonds are broken by photon energy and photothermal is evaporation and melt expulsion. When the laser processing, the etching depth needs to be calculated for prediction of processing result. In this paper, in order to predict the laser etching depth of polyimide by UV laser with the wavelength of 355nm, the theoretical model which includes both the photothermal and the photochemical effect was introduced. The model parameters were obtained by comparing with experimental results. The 3rd harmonic $Nd:YVO_4$ laser system was used in the experiment. From these experimental and theoretical results, the laser ablation of a polyimide was verified to achieve the highest quality microstructure.

Fabrication of 8 inch Polyimide-type Electrostatic Chuck (폴리이미드형 8인치 정전기척의 제조)

  • 조남인;박순규;설용태
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • A polyimide-type electrostatic chuck (ESC) was fabricated for the application of holding 8-inch silicon wafers in the oxide etching equipment. For the fabrication of the unipolar ESC, core technologies such as coating of polyimide films and anodizing treatment of aluminum surface were developed. The polyimide films were prepared on top of thin coated copper substrates for the good electrical contacts, and the helium gas cooling technique was used for the temperature uniformity of the silicon wafers. The ESC was essentially working with an unipolar operation, which was easier to fabricate and operate compared to a bipolar operation. The chucking force of the ESC has been measured to be about 580 gf when the applied voltage was 1.5 kV, which was considered to be enough force to hold wafers during the dry etching processing. The employment of the ESC in etcher system could make 8% enhancement of the wafer processing yield.

  • PDF

Polyimide Surface Modification using UV Laser (UV 레이저를 이용한 폴리이미드 표면 개질에 관한 연구)

  • Oh, Jae-Yong;Lee, Jung-Han;Park, Duk-Su;Shin, Bo-Sung
    • Laser Solutions
    • /
    • v.13 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • In this paper, polyimide (PI) surface was modified by UV Laser with a low laser fluence and investigated changes of surface geometry and chemical characteristics by SEM (scanning electron microscope), X-ray diffraction (XRD), XPS (x-ray photoelectron spectroscopy) and the measurements of contact angle of water. PI surface was peeled off and modified with microstructure fabrications by photochemical ablation over the laser fluence of 50 mJ/cm2. As laser fluence increased, delamination of PI surface was occurred largely and strongly. In chemical characteristics, the O/C and N/C atomic ratios increased and contact angle decreased from $80^{\circ}$ to $40^{\circ}$.

  • PDF

A Study of The Photosensitive Characteristic and Fabrication of Polyimide Thin Film by Dry Processing (건식법을 이용한 폴리이미드 박막의 제조 및 광특성)

  • Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.139-141
    • /
    • 2007
  • Thin films of polyimide (Pl) were fabricated by a vapor deposition polymerization method (VDPM) and studied for the photosensitive characteristic. Polyamic acid (PAA) thin films fabricated by vapor deposition polymerization (VDP) from 6FDA and 4-4' DDE were converted to PI thin films by thermal curing. From AFM and Ellipsometer experimental, the films thickness was decreased and the reflectance was increased as the curing temperature was increased. Those results implies that thin film is uniform. From UV-Vis spectra, PI thin films showed high absorbance in 225 $\sim$ 260 [nm] region.

Numerical Analysis of UV Laser Patterning of Polymeric Thin-Film (자외선 레이저를 이용한 폴리머 박막 가공의 수치해석)

  • Oh, B.K.;Lee, S.K.;Song, M.K.;Kim, J.W.;Hong, S.K.
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.1-5
    • /
    • 2009
  • Conventional patterning based on wet-process for multi-layered film is a relatively complex and costly process though it is a necessary step for fabrication of TFT-LCD module. Recently, a direct pattering by laser has been studied because it is low cost and simple process compared to the wet process. In this work, the selective removal process of multi-layered film (polyimide/indium tin oxide/glass) is studied by modeling the thermal and mechanical behavior for multi-layered structure. Especially, the effects of thickness of polyimide layer are examined.

  • PDF

Voltage-Current Properties of Polyimide use Electrical Power Installation (전력설비용 Polyimide의 전압-전류특성)

  • 전동규;이경섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.112-115
    • /
    • 1998
  • We investigate the qualities of organic materials by which can manufacture organic thin films for solar cells and make thin films for insulation layers of an insulated cable. We give pressure stimulation into organic thin films and detect the induced displacement current. In processing of a device manufacture, We can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/organic thin films(polyimide)/Au and I-V characteristic of the device is measured from 0[V] to +5[V]. The maximum value of measured current is increased as the number of accumulated layers are decreased. The resistance for the number of accumulated layers, the energy density for an input voltage show desired results, and the insulation of a thin film is better as the interval between electrodes is larger.

  • PDF

Ultrashort pulse laser induced PI film scribing (극초단파 레이저를 이용한 PI 필름 가공 기술개발)

  • Kim, Tae-Dong;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.307-311
    • /
    • 2017
  • Ultra short pulse laser processing with the PI (polyimide) substrate is conducted to increase flexibility and radius of curvatures. A femtosecond laser is used to perform micro machining by minimizing the heat effect in PI substrate. The laser processing according to the parameters, such as fabricated line width, depth, laser power, distance between lines, is carried out to understand the characteristics of fabricated lines. A bending test is carried out to evaluate bending shapes and the radius of curvature after bending and spreading it 1000 times. The results demonstrates that the radius of curvature decreases in deepen lines and increases with the augment of the number of the fabricated lines, and distance between lines.