• Title/Summary/Keyword: poly (l-lactide)

Search Result 174, Processing Time 0.031 seconds

Control of Hydrolytic Degradation of Polylactide Mixtures Using Optical Isomers (광학이성질체를 이용한 폴리락타이드 혼합물의 가수분해성 조절)

  • Lee, Won-Ki
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • To control degradation rate of biodegradable poly(lactide)s (PLA), the stereochemical PLAs with different ratios of $d$-lactide and $l$-lactide units were synthesized by the ring open polymerization and a degradation behavior was measured by a Langmuir film balance. Degradation rates of mixture monolayers on alkaline subphase were investigated as a function of optical purity of mixture component, 100, 99, 97 and 95%. As increasing their optical purity, melting temperatures of mixtures from stereocomplexation increased. The degradation rate of mixture monolayer with 100% optical purity was much slower than that of each homopolymer one and the others showed 2 step degradation behaviors. In the first step, the degradation which is faster than that of each homopolymer occurs in the uncomplexed region, and secondly, the degradation occurred in the complexed region which showed similar degradation rate to that of 100% optical purity. These results indicate that the alkaline degradation of stereochemical PLAs could be controlled by stereochemistry and stereocomplexation between enantiomer PLAs.

Synthesis and Characterization of Biodegradable MethoxyPoly(ethylene glycol)-Poly$(\varepsilon-caprolactone-co-L-lactide)$ Block Copolymers (메톡시폴리(에틸렌 글리콜)-폴리(카프로락톤-co-L-락타이드) 공중합체의 합성 및 특성 분석)

  • Hyun Hoon;Cho Young Ho;Jeong Sung Chan;Lee Bong;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • A series of methoxypoly(ethylene glycol) $(MPEG)-poly(\varepsilon-co-L-lactide)$ (PCLA) diblock copolymers were synthesized by ring-opening polymerization of a mixture of $\varepsilon-caprolactone$ and L-lactide with different ratios in the presence of $Sn(Oct)_2$. The characterization of MPEG-PCLA diblock copolymers were examined by $^1H-NMR$, GPC, DSC, and XRD. Kinetic study on ring-opening polymerization of monomer mixtures was carried out in various conditions such as a variation with polymerization time, amount of catalyst, and temperature. The highest conversion obtained in 1.2 ratic of initiator venn catalyst at $110\;^{\circ}C$. The biodegradable characterization of MPEG-PCLA diblock copolymers in aqueous solution was carried out by using GPC for $1\~14$ weeks. The biodegradability of MPEG-PCLA diblock copolymers increased as the L-lactide content of diblock copolymers increased. In conclusion, we confirmed the dependence of polymerization rate according to various conditions. In addition, we can control the biodegradability of MPEC-PCLA diblock copolymers by changing the ratio of PCL and PLA block segment.

Preparation and In Vitro Release of DNA-Loaded Poly(D,L-lactic-co-glycolic acid) Microspheres (DNA가 봉입된 Poly(D,L-lactic-co-glycolic acid) 미립구의 제조 및 시험관내 방출)

  • Son, Hye-Jung;Kim, Jin-Seok
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.69-73
    • /
    • 2005
  • To overcome the main disadvantages of non-viral gene delivery systems such as repeated administration due to the low transfection efficiency, poly(D,L-lactide-co-glycolide) was applied to encapsulate pDNA in its microsphere formulation. Free pDNA or various ratios (w/w) of chitosan/pDNA complexes was used for encapsulation, with the resulting encapsulation efficiency of 44%, 5%, and 8% for free pDNA, 0.7:1 and 1:1 ratios, respectively. Scanning electron micrographs of poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres encapsulating pDNA or chitosan-condensed pDNA revealed a smooth spherical shape immediately after microsphere preparation and a collapsed porous shape in 41 days due to the degradation of PLGA. In vitro release profile showed that the 0.7:1 (w/w) ratio formulation exerted 47% release in 26 days, whereas free pDNA or 1:1 (w/w) ratio formulation did only 15% or 32%, respectively.

Effect of Biodegradable Polymer Coating on the Corrosion Rates and Mechanical Properties of Biliary Magnesium Alloy Stents (생분해성 고분자 코팅이 담관용 마그네슘 합금 스텐트의 분해 속도와 기계적 물성에 미치는 영향)

  • Kim, Hyun Wook;Lee, Woo-Yiel;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • A biliant stent was fabricated using a magnesium alloy wire, a biodegradable metal. In order to control the fast decomposition and corrosion of magnesium alloys in vivo, magnesium alloy wires were coated with biodegradable polymers such as polycaprolactone (PCL), poly(propylene carbonate) (PPC), poly (L-lactic acid) (PLLA), and poly (D, L-lactide-co-glycolide) (PLGA). In the case of PPC, which is a surface erosion polymer, there is no crack or peeling compared to other polymers (PCL, PLLA, and PLGA) that exhibit bulk erosion behavior. Also, the effect of biodegradable polymer coating on the axial force, which is the mechanical property of magnesium alloy stents, was investigated. Stents coated with most biodegradable polymers (PCL, PLLA, PLGA) increased axial forces compared to the uncoated stent, reducing the flexibility of the stent. However, the stent coated with PPC showed the axial force similar to uncoated stent, which did not reduce the flexibility. From the above results, PPC is considered to be the most efficient biodegradable polymer.

Evaluation of In Vitro Release Profiles of Fentanyl-Loaded PLGA Oligomer Microspheres

  • Gilson Khang;Seo, Sun-Ah;Park, Hak-Soo;John M. Rhee;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.246-252
    • /
    • 2002
  • In order to the development of the delivery device of long-acting local anesthetics for postoperative analgesia and control of chronic pain of cancer patient, fentnyl-loaded poly (L-lactide-co-glycolido) (PLGA, molecular weight, 5,000 g/mole; 50 : 50 mole ratio by lactide to glycolide) microspheres (FMS) were studied. FMS were prepared by an emulsion solvent-evaporation method. The influence of several preparation parameters such as initial drug loading, PLGA concentration, emulsifier concentration, oil phase volume, and fabrication temperature has been investigated on the fentanyl release profiles. Generally, the drug showed the biphasic release patterns, with an initial diffusion followed by a lag period before the onset of the degradation phase, but there was no lag time in our system. Fentanyl was slowly released from FMS over 10 days in vitro with a quasi-zero order property. The release rate increased with increasing drug loading as well as decreasing polymer concentration with relatively small initial burst effect. From the results, FMS may be a good formulation to deliver the anesthetic for the treatment of chronic pain.

Bending and Compressive Properties of Crystallized TCP/PLLA Composites

  • Kobayashi, Satoshi;Sakamoto, Kazuki
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.287-295
    • /
    • 2009
  • $\beta$-Tricalcium phosphate ($\beta$-TCP) particles reinforced bioresorbable plastics poly-L-lactide (PLLA) composites were prepared by injection molding. The nominal weight ratio of $\beta$-TCP was selected as 5, 10 and 15%. In order to clarify effects of the PLLA crystallinity on the mechanical properties, the specimens were heat treated isothermally. Results of differential scanning calorimetry indicated that the PLLA crystallinity increased with increasing heat treatment temperature. Bending and compressive tests were conducted on the specimen with different $\beta$-TCP contents and crystallinities. The results show that the bending and compressive moduli increased with increasing $\beta$-TCP contents and crystallinity. On the other hand, bending strength decreased with increasing $\beta$-TCP contents. Maximum bending strength was obtained at the heat treatment of $70^{\circ}C$ for 24 h, whereas compressive 0.2% proof strength increased with increasing heat treatment temperature. This difference is attributed to the difference in the microscopic damages.

Poly(l-lactide) membranes with biomimetic nanolayer for bone induction for tissue regeneration

  • Chung , Ji-Eun;Lee, Jue-Yeon;Kim, Kyung-Hwa;Baek, Hyun-Jin;Ku , Young;Chung, Chong-Pyung;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.226.2-226.2
    • /
    • 2003
  • .The healing of a bone defect is complex, and involves a wide range of cellular, molecular, physiological, and biological processes. The main effect of bone substitute is to promote wound healing by induce cell proliferation. Bone defect sites usually are localized below the original bone surface; therefore, space production and maintenance between the membrane and the original bone surface is essential. As a result, membranes must have proper mechanical strength to prevent the collapse of the soft tissue and maintain wound space that permits membranes of poly (L-lactide) (PLLA) were fabricated to provide and maintain sufficient space for bone growth. (omitted)

  • PDF

Characterization of Poly(ethylene oxide)-b-Poly(L-lactide) Block Copolymer by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

  • Jeongmin Hong;Donghyun Cho;Taihyun Chang;Shim, Woo-Sun;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.341-346
    • /
    • 2003
  • A poly(ethylene oxide)-b-poly(L-lactide) diblock copolymer (PEO-b-PLLA) is characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and a block length distribution map is constructed. Although the MALDI- TOF mass spectrum of PEO-b-PLLA is very complicated, most of the polymer species were identified by isolating the overlapped isotope patterns and by fitting the overlapped peaks to the Schulz-Zimm distribution function. Reconstructed MALDI-TOF MS spectrum was nearly identical to the measured spectrum and this method shows its potential to be developed as an easy and fast analysis method of low molecular weight block copolymers.

pH-Induced Micellization of Biodegradable Block Copolymers Containing Sulfamethazine

  • Shim, Woo-Sun;Lee, Jae-Sung;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.344-351
    • /
    • 2005
  • pH-sensitive block copolymers were synthesized by coupling reaction of sulfamethazine and amphiphilic diblock copolymer, and their micellization-demicellization behavior was investigated. Sulfamethazine (SM), a derivative of sulfonamide, was introduced as a pH responsive moiety while methoxy poly(ethylene glycol)poly(D,L-lactide) (MPEG-PDLLA) and methoxy poly(ethylene glycol)-poly($D,L-lactide-co-{\varepsilon}-caprolactone$) (MPEG-PCLA) were used as biodegradable amphiphilic diblock copolymers. After the sulfamethazine was carboxylated by the reaction with succinic anhydride, the diblock copolymer was conjugated with sulfamethazine by coupling reaction in the presence of DCC. The critical micelle concentration (CMC) and mean diameter of the micelles were examined at various pH conditions through fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. For MPEG-PDLLA-SM and MPEG-PCLA-SM solutions, the pH-dependent micellization-demicellization was achieved within a narrow pH band, which was not observed in the MPEG-PDLLA and MPEG-PCLA solutions. The micelle showed a spherical morphology and had a very narrow size distribution. This pH-sensitive block copolymer shows potential as a site-targeted drug carrier.

Evaluation of the Stability of Biodegradable Nanoparticle with Time via Particle Size Measurement (입자 크기 측정을 통한 생분해성 나노입자의 시간에 따른 분산 안정성 평가)

  • Cho, Kuk-Young;Yim, Jin-Heong;Park, Jung-Ki;Lee, Ki-Seok
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.246-250
    • /
    • 2008
  • Colloidal stability of the biodegradable nanoparticle was characterized by measuring the variation of particle size with time using photon correlation spectroscopy. Three kinds of polymers, namely, poly(D,L-lactide-co-glycolide)(PLGA), PLGA/poly(L-lactide) blends, and PLGA/poly(L-lactide)-g-poly(ethylene glycol) blends were used as matrix material for nanoparticle preparation. Nanoparticles were prepared with or without using poly(vinyl alcohol)(PVA) as suspension stabilizer to evaluate the condition of preparation. Nanoparticles from the blend of amphiphilic graft copolymer with short poly(ethylene glycol) chain and PLGA maintained suspension for 1 day when protein stock solution was introduced. This is somewhat improvement in colloidal stability against protein adsorption compared with that of nanoparticles without PEG moiety. Suspension stabilizer, PVA, had a significant effect on the colloidal stability against freezing and protein adsorption which led to coagulation of nanoparticles. It is important to consider effect of suspension stabilizer as well as materials used to prepare nanoparticle on the colloidal stability.